J

-

REPnR-—— — an ame em mema 1o A W1 DL HAAE Form Approved -

{ OPM No. 0704-0188 o
Public reporting burden for this colection of i A D— A 2 Aewing instructions, searching exwsting data sources gathering and mantaining the data
needed. and reviewing the collection of infor s collection of imformation, including suggestions for reducing this burden, to Washinglon
Headquaners Service, Directorate for inform i f | pon. VA 22202-4302. and to the Office of information and Regulatory Affairs, Office of
e e RGN

T T T S ——
1. AGENCY USE ONLY (Leave | 1] I |

Final:14 Mar 1991 to 01 Jun 1993

(Vi)

. REPORT TYPE AND DATES COVERED k

3. TITLE AND SUBTITLE 5. FUNDING NUMBERS
SD-SCICON UK Limited, SX Ada MC689000 Version 1.2, Local Area VAX cluster
(comprising a VAXserver 3600, 2 MicroVAX Il)(Host) to MC68000 processor on an
MVME117-3FP MPU VME module using an MC68881(Target), 910314N1.11134

6. AUTHOR(S)
AFNOR , Paris, FRANCE

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
AFNOR REPORT NUMBER
7-92080 Paris La Defense
France
5. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS{ES) 10. SPONSORING/MONITORING AGENCY |
REPORT NUMBER

Ada Joint Program Office
United States Department of Defense
Washington, D.C. 20301-3081

11. SUPPLEMENTARY NOTES

E———— S
12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution unlimited.

13 ABSTRACT (Maximum 200 words)

SD-SCICON UK Limited, SX Ada MC689000 Version 1.2,Manchester, England, Local Area VAX cluster (comprising a
VAXserver 3600, 2 MicroVAX Il){Host) to MC68000 processor on an MVME117-3FP MPU VME module using an
MC68881 floating point peripheral (bare machine)(Target), ACVC 1.11

ot

NG, TR W e,
RO b oot
“ Fy
i
EE
. _<5

. I
M

. o

JANDS 1992 B

4

14. SUBJECT TERMS TS NUMBER OF PAGES.

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val.

Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO. 16. PRICE CODE

17 SECURITY CLASSIFICATION 18 SECURITY CLASSIFICATION 19 SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF ABSTRACT

UNCLASSIFIED UNCLASSIFED UNCLASSIFIED

NSN 7540-01-280-550 Standard Form 298, (Rev. 2-89)

Prescribed by ANS| Std 239128

)/

AVF Control Number: AVF_VSR_90502/73-911128

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: #910314N1.11134
SD-SCICON UK LIMITED
XD Ada MC68000 Version 1.2
Local Area VAX cluster (comprising a VAXserver 3600,
2 MicroVAX 2000’s and 1 MicroVAX II) tlost and

MC68000 processor on an MVME117-3FP MPU VME

module using an MC68881 floating point peripheral Target.

Prepared by
Testing Services
The National Computing Centre Limited
Oxford Road
Manchester
M1 7ED
England

VSR Version 90-01-10

2-01046
Hlll\lll\ll\ll‘\ TN

Validation Summary Report

SD-Scicon UK Limited

92 1 10

AVF_VSR_90502/73

XD AL MO6800 Version 1.2

TABLE OF CONTENTS

TABLE OF CONTENTS

CHAPTER 1
1.1 USE OF THIS VALIDATION SUMMARY REPORT 1
1.2 REFERENCES i i it 2
1.3 ACVC TEST CLASSES e, 2
14 DEFINITION OF TERMS 3
CHAPTER 2
21 WITHDRAWN TESTS i e 1
22 INAPPLICABLE TESTS it e i, 1
23 TEST MODIFICATIONS i 3
CHAPTER 3
31 TESTING ENVIRONMENT i, 1
32 SUMMARY OF TESTRESULTS 1
33 TEST EXECUTION i e e e 2
APPENDIX A
APPENDIX B
APPENDIX C
Validation Summary Report AVF_VSR_90502/73

SD-Scicon UK Limited Table of Contents - Page i of i XD Ada MC6800 Version 1.2

Certificate Information

The following Ada implementation was tested and determined to pass ACVC 1.11. Testing was
completed on 14 March 1991.

Compiler Name and Version: XD Ada MC68000 Version 1.2

Host Computer System: Local Area VAX cluster (comprising a VAXserver 3600, 2
MicroVAX 2000°s and 1 MicroVAX II) (under YMS 5.4)
Target Computer System: MC68000 processor on an MVMEI117-3PF MPU VME
module using an MC68881 floating point peripheral (bare
machine).

A more detailed description of this Ada implementation is found in section 3.1 of this report.

As a result of ithis validation effort, Validation Certificate #910314N1.11134 is awarded to SD-
SCICON UK LIMITED. This certificate expires on 1 March 1993.

This report has been reviewed and is approved.

So o>

Jon Leigh

Manager, Systems Software Testing
The National Computing Centre Limited

N

Director,

Ada Vi

Engineering Division

Oxford Road Institute for Defense Analyses
Manchester Alexandria
M1 7ED VA 22311
Engiand

: DTIC TAR 0
2. Ada Joint Program Office e ousced 5
Dr. John Solomond A
: Just it tlon g
Director 7]
Department of Defense -
Washington By I
DC 20301 | Distritut ton/
| Avatinttiity Codes
o Avail and/or
Dist | ESpocial

e

| Accession For
[NTIS ORA&I of
i

A

Validation Semmary Report

SD-Scicon UK Limited

Page ii of iii

T Vel

XD Ada MC6800 Version 1.2

DECLARATION OF CONFORMANCE

The following declgration of conformance was supplied by the customer.

DECLARATION OF CONFORMANCE

Customer: SD-SCIOON UK LIMITED
Oxford Road
Manchester
M1 7ED
United Kingdom
ACVC Version: 111
Ada Implementation:
Ada Compiler Name: XD Ada MCE8000
Version: Version 12
Host Computer System: Local Area VAX cluster (comprising a VAXsexrver 3600, 2-

MicroVAX 2000's and 1 MicroVAX 1) (under VMS SA4)

Target Computer System: MOSB000 processor oa sn MVME117-3PF MPU VME module wsing
‘ an MOGB881 floating point peripberal (bare machine).

Customer’s Declarstion

I, the undersigned, represeating SD-Scicon UK Limited, declare that SD-Scicon UK Limited has no
knowledge of deliberate deviations from the Ada Language Standard ANSI/MIL-STD-1815A in the
implementation(s) listed in this declaration.

f(,ﬂww« | 43 March 12 |
m .

Validation Semmary Report AVF_VSR_905&/73-910307

SD-Scicos UK Lissised Page iii o iii XD Ada MOSS00 Versica 1.2

INTRODUCTION

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada Validation Procedures
[Pro90] against the Ada Standard {Ada83] using the current Ada Compiler Validation Capability
(ACVC). This Validation Summary Report (VSR) gives an account of the testing of this Ada
implementation. For any technical terms used in this report, the reader is referred to [Pro90}. A
detailed description of the ACVC may be found in the current ACVC User’s Guide [UG89].

11 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada Certification Body may make
full and free public disclosure of this report. In the United States, this is provided in accordance with
the "Freedom of Information Act” (5 U.S.C. #552). The results of this validation apply only to the
computers, operating systems, and compiler versions identified in this report.

The organisations represented on the signature page of this report do not represent or warrant that
all statements set forth in this report are accurate and complete, or that the subject implementation
has no nonconformities to the Ada Standard other than those presented. Copies of this report are
available to the public from the AVF which performed this validation or from:

National Technical Information Service
5285 Port Royal Road

Springfleld

VA 22161

Questions regarding this report or the validation test results should be directed to the AVF which
performed this valilation or to:

Ada Validation Organisation
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria

VA 22311

Validation Semmary Report AVF_VSR_%90502/73

SD-Scicon UK Limited Chapter 1 - Page 1 of 4 XD Ada MC6800 Version 1.2

INTRODUCTION

1.2 REFERENCES

{Ada83] Reference Manual for the Ada Programming Language,
ANSIMIL-STD-1815A, February 1983 and ISO 8652-1987

[Pro90] Ada Compiler Validation Procedures,
Version 2.1, Ada Joint Program Office, August 1990

{UGS89] Ada Compiler Validation Capability User’s Guide,
21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC contains a
collection of test programs structured into six test classes: A, B, C, D, E, and L. The first letter of
a test name identifies the class to which it belongs. Class A, C, D, and E tests are executable. Class
B and class L tests are expected to produce errors at compile time and link time, respectively.

The executable tests are written in a self-checking manner and produce a PASSED, FAILED, or
NOT APPLICABLE message indicating the result when they are executed. Three Ada library units,
the packages REPORT and SPPRT13, and the procedure CHECK_FILE are used for this purpose.
The package REPORT also provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test objective. The package
SPPRT13 is used by many tests for Chapter 13 of the Ada Standard. The procedure CHECK_FILE
is used to check the contents of text files written by some of the Class C tests for Chapter 14 of the
Ada Siandard. The operation of REPORT and CHECK_FILE is checked by a set of executable tests.
If these units are not operating correctly, validation testing is discontinued.

Class B tests check that 4 compiler detects illegal language usage. Class B tests are not executable.
Each test in this class is compiled and the resulting compilation listing is examined to verify that all
violations of the Ada Standard are detected. Some of the class B tests contain legal Ada code which
must not be flagged illegal by the compiler. This behaviour is also verified.

Class L tests check that an Ada implementation correctly detects violation of the Ada Standard
involving multiple, separately compiled units. Errors are expected at link time, and execution is
attempted.

In some tests of the ACVC, certain macro strings have to be replaced by implementation-specific
values -- for example, the largest integer. A list of the values used for this implementation is
provided in Appendix A. In addition to these anticipated test modifications, additional changes may
be required to remove unforeseen conflicts between the tests and implementation-dependent
characteristics. The modifications required for this implementation are described in section 2.3.
For each Ada implementation, a customized test suite is produced by the AVF. This customization
consists of making the modifications descnibed in the preceding paragraph, removing withdrawn tests
(see section 2.1) and, possibly some inapplicable tests (see Section 3.2 and [UG89]).

Validation Summery Report AVF_VSR_90502/73

SD-Scicon UK Limited Chapter 1 - Page 2 of 4 XD Ada MC6800 Version 1.2

INTRODUCTION

In order to pass an ACVC an Ada implementation must process each test of the customized test suite

according to the Ada Standard.

14 DEFINITION OF TERMS

Ada Compiler

Ada Compiler
Validation

Capability (ACVC)
Ada Implementation
Ada Joint Program
Office (AJPO)

Ada Validation Facility
(AVF)

Ada Validation
Organisation (AVO)

Compliance of an Ada
Implementation

Computer System

Conformity

Customer

The software and any needed hardware that have to be added to a
given host and target computer system to allow transformation of
Ada programs into executable form and execution thereof.

The means for testing compliance of Ada implementations, consisting
of the test suite, the support programs, the ACVC user’s guide and
the template for the validation summary report.

An Ada compiler with its host computer system and its target
computer system

The part of the certification body which provided policy and guidance
for the Ada Certification system.

The part of the certification body which carries out the procedures
required to establish the compliance of an Ada implementation.

The part of the certification body that provides technical guidance for
operations of the Ada Certification system.

The ability of the implementation to pass an ACVC version.

A functional unit, consisting of one or more computers and
associated software, that uses common :torage for all or part of a
program and also for all or part of the data necessary for the
execution of the program; executes user-written or user-designated
programs; performs user-designated data manipulation, including
arithmetic operations and logic operations; and that can execute
programs that modify themselves during execution. A computer
system may be a stand-alone unit or may consist of several inter-
connected units.

Fulfilment by a product, process or service of all requirements
specified.

An individual or corporate entity who enters into an agreement with
an AVF whica specifies the terms and conditions for AVF services
(of any kind) to be performed.

Validation Summary Report

SD-Scicon UK Limited

AVE_VSR_90502/73

Chapter 1 - Page 3of 4 XD Ada MC6800 Version 1.2

INTRODUCTION

Declaration of
Conformance

Host Computer System

Inapplicable test

ISO

Operating System

Target Computer
System

Validated Ada Compiler

Validated Ada
Implementation

Validation

Withdrawn test

A formal statement from a customer assuring that conformity is
realized or attainable on the Ada implementation for which
validation status is realized.

A computer system where Ada source programs are transformed into
executable form.

A test that contains one or more test objectives found to be
irrelevant for the given Ada implementation.

International Organisation for Standardisation.

Software that controls the execution of programs and that provides
services such as resource allocation, scheduling, input/output control,
and data management. Usually, operating systems are predominantly
software, but partial or complete hardware implementations are

possible.

A computer system where the executable form of Ada programs are
executed.

The compiler of a validated Ada implementation.

An Ada implementation that has been validated successfully either
by AVF testing or by registration [Pro90].

The process of checking the conformity of an Ada compiler to the
Ada programming language and of issuing a certificate for this
implementation.

A test found to be incorrect and not used in conformity testing. A
test may be incorrect because it has an invalid test objective, fails to
meet its test objective, or contains erroneous or illegal use of the

Ada programming language.

Validation Summary Report

SD-Scicon UK Limited

AVF_VSR_90502/73

Chapter 1 - Page 4 of 4 XD Ada MC6800 Version 1.2

IMPLEMENTATION DEPENDENCIES

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for withdrawing each test is
available from either the AVO or the AVF. The publication date for this list of withdrawn tests is

91-02-25.

E28005C B28006C
C35508N C35702A
C45612A C45612B
AT4006A C74308A
B83026B C83026A
C97116A C98003B
CC1223A BC1226A
AD1BO8SA BD2AORA
CD2A41E CD2ASB7TA
CD4022D CD4024B
CDS111A CD7004C
AD7201A ADT7201E
CD9005SA CD9005B
CE2119B CE2205B
CE3411B CE3412B
CE3814A CE3902B

C34006D C35508I
B41308B C43004A
C45612C C45651A
B&3022B B83022H
C83041A B85001L
BA2011A CB7001A
CC1226B BC3009B
CD2A21E CD2A23E
CD2B15C BD3006A
CD4024C CD4024D
ED7005D CD7005E
CD7204B ADT7206A
CDA201E CE21071
CE2405A CE3111C
CE3607B CE3607C

22 INAPPLICABLE TESTS

C35508J)
C45114A
C46022A
B83025B
C86001F
CB7001B
BD1B02B
CD2A32A
BD4008A
CD4031A
AD7006A
BD8002A
CE2117A
CE3116A
CE3607D

C35508M
C45346A
B49008A
B&3025D
C94021A
CB7004A
BD1B06A
CD2A41A
CD4022A
CD4051D
CD7006E
BD8004C
CE2117B
CE3118A
CE3812A

A test is inapplicable if it contains test objectives which are irrelevant for a given Ada
implementation. Reasons for a test’s inapplicability may be supported by documents issued by the
ISO and AJPO known as Ada Commentaries and commonly referenced in the format Al-ddddd. For
this implementation, the following tests were determined to be inapplicable for the reasons indicated;
references to Ada Commentaries are included as appropriate.

The following 159

SYSTEM.MAX_DIGITS:

C241130..Y (11 tests)
C357060..Y (11 tests)
C357080..Y (11 tests)
CA52410..Y (11 tests)
C454210..Y (11 tests)
C455240..Z (12 tests)
C456410..Y (11 tests)

C357050..Y (11 tests)
C357070..Y (11 tests)
C358020..Z (12 tests)
C453210..Y (11 tests)
C455210..Z (12 tests)
C456210..Z (12 tests)
C460120..Z (12 tests)

tests have floating-point type declarations requiring more digits than

Validation Summary Report

SD-Scicon UK Limited

Chapter 2 - Page 1 of 3

AVF_VSR_90502/73

XD Ada MC6800 Version 1.2

IMPLEMENTATION DEPENDENCIES

The following 20 tests check for the predefined type LONG_INTEGER:

C35404C C45231C C45304C C45411C C45412C
C45502C C45503C C45504C C45504F C45611C
C45613C C45614C C45631C C45632C B52004D
CS5B0O7A B5SB09C B86001W C86006C CD7101F

C35713B, C45423B, B86001T, and C86006H check for the predefined type SHORT_FLOAT.
CA45423A, C45523A and C45622A check that if MACHINE_OVERFLOWS is TRUE and the results

of various floating-point operations lie outside the range of the base type, then the proper exception
is raised. For this implementation, MACHINE_OVERFLOWS is FALSE.

C45531M..P (4 tests) and C45532M..P (4 tests) check fixed-point operations for types that require a
SYSTEM.MAX_MANTISSA of 47 or greater.

B86001Y checks for a predefined fixed-point type other than DURATION.

C96005B cherks for values of type DURATION’BASE that are outside the range of DURATION.
There are no such values for this implementation.

CD1009C uses a representation clause specifying a non-default size for a floating-point type.

CD2AR4A, CD2AS4E, CD2AS4IL..J (2 tests), and CD2A840 use representation clauses specifying
non-default sizes for access types.

CD2B15B checks that STORAGE_ERROR is raised when the storage size specified for a collection
is too small to hold a single value of the designated type; this implementation allocates more space
than was specified by the length clause, as allowed by Al-00558.

The following 264 tests check for sequential, text, and direct access files:

CE2102A..C (3)
CE2103C..D (2)
CE2107A.H (8)
CE2110A..D (4)
CE2201A..C (3)
CE2204A.D (4)
CE2401A..C (3)
CE2401H..L (5)
CE2406A
CE2410A.B (2)
CE3102J.K (2)
CE3107B
CE3111A.B (2)
CE3115A
CE3207A

CE2102G.H (2)
CE2104A..D (4)
CE2107L
CE2111A.1 (9)
EE2201D..E (2)
CE2205A
EF2401D
CE2403A
CE2407A B (2)
CE2411A
CE103A
CE3108A..B (2)
CE3111D.E (2)
CE3119A
CE3208A

CE2102K
CE2105A.B (2)
CE2108A.H (8)
CE2115A.B (2)
CE2201F..N (9)
CE2206A
CEZ2401E..F (2)
CE2404A.B (2)
CE2408A.B (2)
CE3102A..C (3)
CE3104A..C (3)
CE3109A
CE3112A.D (4)
EE3203A
CE3301A

CE2102N..Y (12)
CE2106A..B (2)
CE2109A..C (3)
CE2120A..B (2)
CE2203A
CE2208B
EE240!G
CE2405B
CE2409A.B (2)
CE3102F.H (3)
CE3106A..B (2)
CE3110A
CE3114A.B (2)
EE3204A
EE3301B

Validation Sammary Report

SD-Scicon UK Limited

Chapter 2 - Page 2 0of 3

AVF_VSR_90502/73

XD Ada MC6800 Version 1.2

IMPLEMENTATION

CE3302A CE3304A CE3305A CE3401A
CE3402A EE3402B CE3402C..D (2) CE3403A..C (3)
CE3403E..F (2) CE3404B..D (3) CE3405A EE3405B
CE3405C..D (2) CE3406A..D (4) CE3407A..C (3) CE3408A..C (3)
CE3409A CE3409C..E (3) EE3409F CE3410A
CE3410C..E (3) EE3410F CE3411A CE3411C
CE3412A EE3412C CE3413A..C(3) CE3414A
CE3602A..D (4) CE3603A CE3604A..B (2) CE3605A..E (5)
CE3606A..B (2) CE3704A.F (6) CE3704M..0 (3) CE3705A..E (5)
CE3706D CE3706F..G (2) CE3804A..P (16) CE3805A..B (2)
CE3806A..B (2) CE3806D..E (2) CE3806G..H (2) CE3904A..B (2)
CE3905A..C (3) CE3905L CE3906A..C (3) CE3906E..F (2)

DEPENDENCIES

23 TEST MODIFICATIONS
Modifications (see section 1.3) were required for 13 tests.

The following test was split into two or more tests because this impiementation did not report the
violations of the Ada Standard in the way expected by the original tests.

B97103E

C45524A. K (11 tests) were graded passed by Test Modification as directed by the AVO. These tests
expect that a repeated division will result in zero; but the Ada standard only requirzs that the result
lie in the smallest safe interval. Thus, the tests were modified to check that the result was within the
smallest safe ‘nterval, by adding the following code after line 141; the modified tests were passed:

ELSIF VAL <= F'SAFE_SMALL THEN COMMENT ("UNDERFLOW SEEMS GRADUAL");

CE3901A was graded passed by Test Modification as directed by the AVO. This test expects that
implementations that do not support external files will raise USE_ERROR on the attempt to create
a file at line 52; this implementation raises NAME_ERROR, as allowed by A1-00332. The test was
modified by inserting *| NAME_ERROR '’ into the exception choice at line 52, and the modified test
was passed.

Validation Summary Report AVF_VSR_90502/73

SD-Scicon UK Limited Chapter 2 - Page 3 of 3 XD Ads MC6809 Version 1.2

PROCESSING INFORMATION

CHAPTER 3
PROCESSING INFORMATION
31 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described adequately by the ‘aformation
given in the initial pages of this report.

For a point of contact for technical information about this Ada implementation system, see:

Tim Magness
SD-Scicon UK Ltd
Pembroke House
Pembroke Broadway
Camberley

Surrey

GU1S 3XD

For a point of contact for sales information about this Ada implementation system, see:

Colin Foster
SD-Scicon UK Ltd
Pembroke House
Pembroke Broadway
Camberley

Surrey
GU1S 3XD

Testing of this Ada implementation was conducted at the customer’s site by a validation team from
the AVF.

32 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test of the customized test
suite in accordance with the Ada Programming Language Standard, whether the test is applicable or
inapplicable; otherwise, the Ada Implementation fails the ACVC [Pro90].

For all processed tests (inapplicable and applicable), a result was obtained that conforms to the Ada
Programming Language Standard.

a) Total Number of Applicable Tests 3611
b) Toial Number of Withdrawn Tests 92
c) Processed Inapplicable Tests 467
d) Non-Processed /O Tests 0

e) Non-Processed Floating-Point Precision Tests 0

Validation Summary Report AVF_VSR_90502/73

SD-Scicon UK Limited Chapter 3 - Page 1 of 2 XD Ada MC6800 Version 1.2

PROCESSING INFORMATION

f) Total Number of Inapplicable Tests 467 (c+d+e)
g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

33 TEST EXECUTION

Version 1.11 of the ACVC comprises 4170 tests. When this compiler was tested, the tests listed in
section 2.1 had been withdrawn because of test errors. The AVF determined that 467 tests were
inapplicable to this implementation. All inapplicable tests were proccssed during validation testing.
In addition, the modified tests mentioned in section 2.3 were also processed.

A magnetic tape containing the customized test suite (see section 1.3) was taken on-site by the
validation teara for processing. The contents of the magnetic tape were loaded on to a VAX 8600
and then copied across to the host using DECnet.

After the test files were loaded onto the host computer, the full set of tests was processed by the Ada
implementation.

The tests were compiled and linked on the host computer system, as appropriate. The executable
images were transferred to the target computer system by the communications link described above,
and run. The results were captured on the host computer system.

Testing was performed using command scripts provided by the customer and reviewed by the
validation team. See Appendix B for a complete listing of the processing options for this
implementation. It also indicates the default options. The options invoked explicitly for validation
testing during this test were:

/LIST used for tests requiring compilation listings
/DEV=DAY_0 in-house compiler option to remove extraneous listing information eg dates
and headers.

Test output, compiler and linker listings, and job logs were captured on magnetic tape and archived
at the AVF. The listings examined on-site by the validation team were also archived.

Validation Summary Report AVF_VSR_90502773

SD-Scicon UK Limited Chapter 3 - Page 2 of 2 XD Ada MC6800 Version 1.2

Annex B

Predefined Language Pragmas

In addition to the standard predefined pragmas, described in Annex B
of the Reference Manual for the Ada Programming Language, XD Ada sup-
ports pragmas CALL_SEQUENCE_FUNCTION, CAL _SEQUENCFg
PROCEDURE, LINK_OPTION, and TITLE, which are defined here.
This annex also summarizes the definitions given elsewhere of the
remaining implementation-defined pragmas.

Definitions

CALL_SEQUENCE_FUNCTION
CALL_SEQUENCE_PROCEDURE

The pragma CALL_SEQUENCE_PROCEDURE is used for describing
machine code insertions or exported subprograms. It specifies how
parameters are mafu;;\ed onto registers, and which registers must be
preserved, for machine code insertions (see Section 13.8). The pragma
CALL_SEQUENCE_FUNCTION is also provided. These pragmas have
the form:

pragms CALL_SEQUENCE_FUNCTION

([([UNIT =>) internal_name

[+ [RESULT_TYPE =>] type_mark)

[+, [PARAMETER_TYPES =>} (parameter_types) |
{, [MECHANISM =»>] mechanism)

{» [RESULT_MECHANISM =>] mechanism_spec]

[, [PRESERVED_REGISTERS =>] (registers) |}

|
pregma CALL_SEQUENCE_PROCEDURE

({ [UNIT =>) internal_name

[, [PARAMETER_TYPES =>] { parameter_types) |
{, [MBCHANISM =>] mechanism |

[, [PRESERVED_REGISTERS => | (reqisters) |

)i

Predefined Language Pragmas 8-1

parameter_types ::=
null | type_mark (, type_mark)

mechanism ti=

mechanism_spec | (mechanism_spec {, mechanism_spec) }
mechanism_spec ::=

mechanism_name [([REGISTER =>] register_name) |
mechanism_name ::=

VALUE

REFERENCE | BIT_REFERENCE |

DOPE_VECTOR | BIT_DOPE_VECTOR

registers si=
aull | register_name {, register_name }

Functions must be identified by their internal names and parameter
and result types. The parameter and result types can be omitted only if
there is exactly one function of that name in the same declarative part or
package specification. Otherwise, both the parameter and result types
must be specified.

Procedures must be identified by their internal names and parameter
types. The parameter types can be omitted only if there is exactly
one procedure of that name in the same declarative part or package
specification. Otherwise, the parameter types must be specified.

The parameter types option specifies a series of one or more type
marks (type or subtype names), not parameter names. Each type mark
is positionally associated with a formal parameter in the subprogram’s
declaration. The absence of parameters must be indicated by the
reserved word null.

The result type option is used only for functions; it specifies the type or
subtype of the function result.

The mechanism option specifies how the imported subprogram expects
its parameters to be passed (for example, by value, by reference or

by descriptor). The calling program (namely the XD Ada program)

is responsible for ensuring that parameters are passed in the form
required by the external routine.

If the first form of the mechanism option is given (a single mechanism
name without parentheses), all parameters are passed using that mech-
anism. If the second form is given (a series of mechanism names in
parentheses and separated by commas), each mechanism name de-
termines how the parameter in the same position in the subprogram
specification will be passed. With the second form, each parameter
name must have an associated mechanism name.

B-2 Predefined Language Pragmas

The result mechanism option is used only for functions; it specifies the
parameter-passing mechanism for passing the result type.

Mechanism names are described in Section 13.9a.1.1.

The preserved registers option gives a list of hardware registers which

are not altered by the procedure or function. If this option is omitted it
implies that no registers are preserved: in this case the effect is one of
the following:

e If the body of the subprogram is written in Ada, the compiler
calculates which registers are preserved

e If the body of the subprogram is a machine code insertion, the
pragma has the same effect as pragma IMPORT_PROCEDURE

LINK_OPTION

This pragma is used to associate link option file names with a program.
Link option files are used to specify the target and mapping definitions
to be used when building the program. In this way, they do not have
to be explicitly defined on the XDACS LINK command line. The
appropriate external t:?et and mapping definitions (in the form of link
option files) are entered into the program library by use of the XDACS
command COPY LINK_OPTION/FOREIGN, as described in Developing
XD Ada Programs on VMS Systems for the MC68020. If a suitable link
option file exists in another program library, it can be copied to the
current program library with the XDACS command COPY LINK_
OPTION. The advantage of using link option files is that the program
definition is separate from the program itself, and so can be altered
without making the last compile obsolete. The LINK_OPTION pragma
therefore removes the need to recompile the whole program. More
detail on this topic can be found in Sections 7.9 and 8.10 of Developing
XD Ada Programs on VMS Systems for the MC68020.

Pragma LINK_OPTION has the form:

pragma LINK_OPTION((
[[TARGET=>]link-option-file-name)
{, [MAPPING=>]link-option-file-name)
1)

This pragma is only allowed in the outermost declarative part of a
subprogram that is a library unit; at most one such pragma is allowed
in a subpr. . If it occurs in a subprogram other than the main
program, this pragma has no effect (see Sections 9.8 and 9.9 (LRM)).

Predefined Language Pragmas B-3

TITLE

Takes a title or a subtitle string, or both, in either order, as arguments.

Pragma TITLE has the form:

pragma TITLE (titling-option

[.titling-option});

titling-option 1=

[TITLE =>) string_literal
| [SUBTITLE =>) string_literal

This pragma is allowed anywhere a pragma is allowed; the given strings
supersede the default title or subtitle portions of a compilation listing.

Summary

Pragma
EXPORT_EXCEPTION

EXPORT_FUNCTION

B8-4 Predsefined Language Pragmas

Meaning

Takes an internal name denoting an
exception, and optionally takes an
external designator (the name of an
XD Ada Builder giobal symbol), and
a form (ADA) as arguments. This
pragma is only allowed at the place
of a declarative item, and must apply
to an exception declared by an earlier
declarative item of the same declara-
tive part or package specification. The
E ﬁ::: drenmls an Ada exception to

ed by programs written in XD
Ada MC68020 assembly language (see
Section 13.9a.3.2).

Takes an internal name denoting a
function, and optionally takes an ex-
ternal designator (the name of an XD
Ada Builder global symbol), parameter
types. and result type as arguments.
This pragma is only allowed at the place
of a declarative item, and must apply
to a function declared by an earlier
declarative item of the same declara-
tive part or package specification. In
the case of a function declared as a
compilation unit, the pragma is only
allowed after the function declaration

EXPORT_OBJECT

EXPORT_PROCEDURE

and before any subsequent compilation
unit. This pragma is not allowed for a
function declared with a renaming dec-
laration, and is not allowed for a generic
function (it can be given for a generic
instantiation). This pragma permits an
Ada function to be called from a pro-
gram written in assembly language (see
Section 13.9a.1.2).

Takes an internal name denoting an
object, and optionally takes an exter-

nal designator (the name of an XD Ada
Builder global symbol), and size des-
ignator as arguments. This pragma is
only allowed at the place of a declarative
item at the outermost level of a library
package specification or body, and must
apply to a variable declared {y an earlier
declarative item of the same package
specification or body; the variable must
be of a type or subtype that has a con-
stant size at compile time. This pra

is not allowed for objects declared with a
renaming declaration, and is not allowed
in a generic unit. This pragma permits
an Ada object to be reterred to by a
routine written in assembly language (see
Section 13.9a.2.2).

Takes an internal name denoting a pro-
cedure, and optionally takes an external
designator (the name of an XD Ada
Builder global symbol), and parameter
es as arguments. This pragma is only
allowed at the place of a declarative item,
and must apply to a procedure declared
by an earlier declarative item of the same
declarative part or package specification.
In the case of a procedure declared as
a compilation unit, the pragma is only
allowed after the procedure declaraton
and before any subsequent compilation
unit. This pragma is not allowed for
a procedure declared with a renaming
declaration, and is not allowed for a

Predefined Language Pragmas B8-5

IMPORT_EXCEPTION

IMPORT_FUNCTION

B-8 Predefined Language Pragmas

generic procedure (it may be given for

a generic instantiation). This pragma
permits an Ada routine to be called from
a program written in assembly language
(see Section 13.9a.1.2).

Takes an internal name denoting an
exception, and optionally takes an ex-
ternal designator (the name of an XD
Ada Builder global symbol), and a form
(ADA) as arguments. This pragma is
only allowed at the place of a declarative
item, and must apply to an exception
declared by an earlier declarative item
of the same declarative part or package
specification. The pragma is included for
compatibility with VAX Ada (see Section
13.9a.3.1).

Takes an internal name denoting a func-
tion, and optionally takes an external
designator (the name of an XD Ada
Builder global symbol), parameter types,
and result type as arguments. Pragma
INTERFACE must be used with this
pragma (see Section 13.9). This pra,

is only allowed at the place of a declar-
ative item, and must apply to a function
declared by an earlier declarative item
of the same declarative part or package
specification. In the case of a func-

tion declared as a compilation unit, the
pragma is only allowed after the function
declaration and before any subsequent
compilation unit. This pragma is allowed
for a function declared with a renaming
declaration; it is not allowed for a generic
function or a generic function instantia-
tion. This pragma permits an assembly
language routine to be used as an Ada
function (see Section 13.9a.1.1).

IMPORT_OBJECT

IMPORT_PROCEDURE

Takes an internal name denoting an
object, and optionally takes an externai
designator (the name of an XD Ada
Builder global symbol), as arguments.
This pragma is only allowed at the place
of a declarative item at the outermost
level of a library package specification
or body, and must apply to a variable
declared by an earlier declarative item of
the same package specification or body;
the variable must be of a type or subtype
that has a constant size at compile time.
This pragma is not allowed for objects
declared with a renaming declaration,
and is not allowed in a generic unit. This
pragma permits storage declared in an
assembly language routine to be referred
to by an Ada program (see Section
13.9a.2.1).

Takes an internal name denoting a
pracedure, and optionally takes an ex-
ternal designator (the name of an XD
Ada Builder global symbol), and pa-
rameter types as arguments. Pragma
INTERFACE must be used with this
pragma (see Section 13.9). This pragma
is only allowed at the place of a declara-
tive item, and must apply to a procedure
declared by an earlier declarative item
of the same declarative part or pack-
age specification. In the case of a
procedure declared as a compilation
unit, the pragma is only allowed after
the procedure declaration and before
any subsequent compilation unit. This
pragma is allowed for a procedure de-
clared with a renaming declaration; it is
not allowed for a generic procedure or
a generic procedure instantiation. This
pragma permits an assembly language
routine to be used as an Ada procedure
(see Section 13.9a.1.1).

Predefined Language Pragmas B8-7

INTERFACE

LEVEL

STORAGE_UNIT

SUPPRESS_ALL

VOLATILE

B-8 Predefined Language Pragmas

In XD Ada, pragma INTERFACE is
required in combination with pragmas
IMPORT_FUNCTION and IMPORT_
PROCEDURE (see Section 13.9a.1).

This pragma identifies a task or task type
as running at interrupt level. Pragma
LEVEL has one argument specifying

the level for its interrupts (see Section
13.5.1).

In XD Ada, the only argument allowed
for this pragma is 8.

This pragma has no argument and is
only allowed following a compilation
unit. This pragma specifies that all run-
time checks in the unit are suppressed
{see Section 11.7).

Takes the simple name of a variable

as the single argument. This pragma

is only allowed for a variable declared
by an object declaration. The variable
declaration and the pragma must both
occur (in this order) immediately within
the same declarative part or package
specification. The pragma must appear
before any occurrence of the name of
the variable other than in an address
clause or in one of the XD Ada pragmas
IMPORT_OBJECT or EXPORT_OBJECT.
The variable cannot be declared by a
renaming declaration. The VOLATILE
pragma specifies that the variable may be
modified asynchronously. This pragma
instructs the compiler to obtain the value
of a variable from memory each time it
is used (see Section 9.11).

Annex B

Predefined Language Pragmas

This chapter supplies details of three pragmas introduced by XD Ada
MC68020 Version 1.2, pragma DIRECT_INTERRUPT_ENTRY, pragma
IDENT and pragma TIME_SLICE. XD Ada pragmas in addition to those
defined in Annex B of the Reference Manual for the AdaProgramming

Lan (CALL_SEQUENCE_FUNCTION, CALL_SEQUENCE_

PR URE, LEVEL, LINK_OPTION and TITLE) are described in

the XD Ada MC68020 Supplement to the Ada Language Reference Manual for
Version 1.0.

Definitions
IDENT

Takes a string literal of 31 or fewer characters as the single argument.
The pragma IDENT has the following form:

pragme IDENT (string_literal);
This pragma is allowed only in the outermost declarative part of a

compilation unit. The given string is used to identify the object module
associated with the compilation unit in which the pragma IDENT occurs.

Summary

Pragma Meaning

DIRECT_INTERRUPT_ENTRY Takes the simpie name of an interrupt
entry, which must have no parameters,
as the single argument. This pragma
signals to the compiler that the interrupt

Predefined Language Pragmas B-~1

TIME_SLICE

B-2 Predefined Language Pragmas

entry is to be directly connected to the
hardware interrupt (see Section 13.5.1).

Takes a static expression of the prede-
fined fixed point type DURATION (in
Package STANDARD) as the single ar-
gument. This pragma is only allowed

in the outermost declarative part of a
library subprogram, and at most one
such pragma is aliowed in a library sub-
program. It has an effect only when

the subprogram to which it applies is
used as a main program. This pragma
specifies the nominal amount of elapsed
time permitted for the execution of a task
when other tasks of the same priority are
also eligible for execution. A positive,
nonzero value of the static expression
enables scheduling for all tasks in the
subprogram; a negative or zero value
disables it (see Section 9.8a).

Annex C

Predefined Language Environment

NOTE

The complete Appendix C (specification of the package
STANDARD) is reproduced for convenience. The XD Ada
additions to this package are the types SHORT_INTEGER,
SHORT_SHORT_INTEGER, LONG_FLOAT, and LONG_
LONG_FLOAT.

| This appendix outlines the specification of the package STANDARD
containing ail predefined identifiers in the language. The corresponding
package body is implementation-defined and is not shown.

2 The operators that are predefined for the types declared in the package
STANDARD are given in comments since they are implicitly declared.
Italics are used for pseudo-names of anonymous types (such as univer-
sal_real) and for undefined information (such as implementation_defined
and any_fixed_point_type).

k] package STANDARD is
4 type BOOLEAN is (FALSE, TRUE);
-- The predefined relational operators for this type are as follows:
-- fumction "=" (LEFT, RIGHT : BOOLEAN) returm BOOLEAN;
-- funetiom "/=" (LEFT, RIGHT : BOOLEAN) returm BOOLEAN;
-- fumction "<* {LEFT, RIGHT : BOOLEAN) retursm BOOLEAN:
-~ function “<«~ (LEFT, RIGHT : BOOLEAN) returm BOOLEAN;
-~ fumction ">~ ({LEFT, RIGHT : BOOLEAN) returm BOOLEAN:
-~ fumetion ">=- (LEFT, RIGHT : BOOLEAN) returs BOOLEAlN:

Predefined Language Environment C-1

-- The predefined logical operators and the predefined logical
-- neqgation operator are as follows:

-- functiom "and (LEFT, RIGHT : BCOLEAN) return BOOLEAN;

~- functioa “or~” (LEFT, RIGHT : BOOLEAN) retura BOOLEAN;

-~ fuactiom “xor® (LEFT, RIGHT : S0O0OLEAN) returm BOOLEAN:;

-- functioan "not”® (RIGHT : BOOLEAN) retura BOOLEAN;

s -- The universal type universal_:integer i1s predefined.

6 type INTEGER is 1implementation_defined;
-~ The predefined operators for this type are as follows:
-- function "=~ (LEFT, RIGHT : INTEGER) returm BOOLEAN;
-- fumctioan "/« (LEFT, RIGHT : INTEGER) returm BOOLEAN;
-- functiom "~<* (LEFT, RIGHT : INTEGER) returm BOOLEAN;
-- functioma "<=~ (LEFT, RIGHT : INTEGER) returam BOOLEAN;
~- functioa ">" (LEFT, RIGHT : INTEGER) returm BOOLEAN;
-- fumctiomn ">=" (LEPT, RIGHT : INTEGER) returm BOOLEZAN;
-- functiom "+" (RIGHT : INTEGER) returm INTEGER;
-- fuactioa "-" (RIGHT : INTEGER) returm INTEGER:
~- function "abs" (RIGHT : INTEGER) returm INTEGER;
-- fuactiom "+" (LEPT, RIGHT : INTEGER) retura INTEGER;
-~ function “-" (LEFT, RIGHT INTEGER) returm INTEGER;

-~ fuactios -~/" (LEPT, RIGHT INTREGER) retura INTEGER:
-- functioa "“rem” (LEFT, RIGHT INTEGER) retura INTEGER;
-~ fuamctioa "mod” (LEFT, RIGHT : INTEGER) returm INTEGER;
-- fusctiom "“*** (LEFT : INTEGER;

RIGHT : INTEGER) retura INTEGER;

1

-- fumctioa "*° (LEFT, RIGHT : INTEGER) returm iINTEGER;
t
:

7 -- »nn implementation may provide additional predefined integer types.
-~ it is recommended that the names of such additional types end
-- with INTEGER as in SHORT_INTEGER or LONG_INTEGER. The specification
-- rf{ each operator for the type universal_integer, or for
-~ any additional predefined integer type, is obtained by replacing
-~ INTEGER by the name of the type in the specification of the
-- corresponding operator of the type INTEGER, except for the right
-~ operand of the exponentiating operator.
type SHORT_INTEGER is implementastion_defined;
type SHORT_SHORT_INTEGER is implementation_defined;

[} -~ The universal type universal_real is predefined.

9 type FLOAT is .mplementation_defined:;
-- The predefined operators for this type are as follows:
-- fuaction "=~ (LEFT, RIGHT : FLOAT) returm BOOLEAN;
-- functiom ~/== (LEFT, RIGHT : FLOAT) return BOOLEAN;
-- fuactioa <" (LEPT, RIGHT : FLOAT) retura BOOLEAN;
-~ fuactiom "<=~ {LEFT, RIGHT : TLOAT) returm BOOLEAN;
-- funection ">~ (LEFT, RIGHT : FLOAT) returm BOOLEAN;
-- fumction “>== (LEFT, RIGHT FLOAT) returm BOOLEAN;
-~ functioa "+" {RIGHT =LOAT; retura FLOAT;
-~ functiom "~-" {RIGHT : FLCAT) returs FLOAT;

-~ fumctioa "abs” (RIGHT : FLOAT) returm FLOAT;

C-2 Predefined Language Environment

-~ function "+" (LBFT, RIGHT : FLOAT) return FLOAT;

-~ function "-" (LEFT, RIGHT : FLOAT) retura FLOAT;
-- function "*" (LEFT, RIGHT : FLOAT) return FLOAT;
-- fumection "/" (LBEFT, RIGHT : FLOAT) retursm FLOAT;

-- function "**" (LEFT : FLOAT; RIGHT : INTEGER) returm FLOAT;

An implementation may provide additional predefined floating-point
types. It 18 rscommended that the names of such additional types
end with FLOAT as in SHORT_FLOAT or LONG_FLCAT. The specification
of each operator for the type universal_reai, or for any additional
predefined floating-point type, is obtained by replacing FLOAT by
the name of the type in the specification of the correaponding
operator of the type FLOAT.

type LONG_FLOAT is implementation_defined;

type LONG_LONG_FLOAT is implementation_defined:

In addition, the foll:wing operators 2 e predefined for universal
typest

-- functioa "*" (LEFT : universal_integer:
RIGHT : universal_real) Tetura universal real;
-- functiom "*“ (LEPFT : universal_real;
RIGHT : universal_integer) returm universal_.eal;
-- function "/° (LEFT : universal_real;
-- The type universal_fixed is predefined. The only operators
-- declared for this type are
-- functiom "*" (LEFT : any_fixed_point_type:;
RIGHT : any_fixed_point_type)
return universal_fixed;
-- functiom ~/" (LEPFT : any_fixed_point_type;
RIGHT : any_fixed_point_type)
return universal_fixed;

The following ¢ srazters form the standard ASCII character set.
Charac*er ,,terals corresponding to control characters are not
id--~tifiers; they are indicated in italics in this definition.

type CHARACTER is

(nad, ron, 9tXx etx, eot, eng, ack, bel,
bs, ht, 1z, vt, £f, cr, so, 81,
dle, dcl, dc2, dc3, dcé, nak, syn, etb,
can, enm, sub, esc, fs, gs, rs, us,
’ 'I '!'I ’-‘l "" .s,l “'I '5'1 'I'I
N) vy, ey, A -ty ety A
o, e, 20, '3, ‘4, 'S, &, 70,
r9r, 9, T, gty ', = >, r2?r,
“ar, A, B, T, ‘D', 'E', T, 'GY,
MY, rIt, 3, R, LY, M, cur, o 0r,
‘P*, ‘Q’, ‘R", 'S’ T, U, v, W,
Xt Y, TTT, U, N, e e T

Predefined Language Environment C-3

C-4

- ra’, DY, e’y d . ‘e, £ ’ 'C_!',
"he, L, Y, k', 1, ‘m’, n’, 2,
A L A T, tuty, A
‘X', "l’, ‘Y, '(" l" ')" T dely;
for CHARACTER use -- 128 ASCII character set without holes
(0, 1, 2, 3, 4, S, ..., 125, 126, 127);
14 -- The precefined operators for the type CHARACTER are the same

-- as for any enumeration type.

15 package ASCII is
-~ Control characters:

NUL : constamt CHARACTER := nul;
SOH : comstant CHARACTER := soh;
STX : constant CHARPCTER := stX;
BTX : coastant CHARACTER := etx;
BOT : conatant CHARACTER := eot;
ENQ : constant CHARACTER := enq;
ACK : constamt CHARACTER :1= ack;
BEL : comstant CHARACTER := bel:;
BS : constant CHARACTER 1= bs;
HT : constant CHARACTER 1= ht;
LF : constaat CHARACTER := If;
vT : coastamt CHARACTER 1= vt;
FF : comstaat CHARACTER 1= £f:;
CR 1 comstant CHARACTER 1= cr;
]e] : constant CHARACTER := 80;
St : comstant CHARACTER 1= 8i;
DLE : constant CHARACTER := dle;
DC1l : constant CHARACTER := dcl;
DC2 : comstant CHARACTER := dcl;
o ok} : constamt CHARACTER := dcl:;

DC4 : constant CHARACTER := dcé¢;

NAK : constamt CHARACTER := nak;
SYN t constamt CHARACTER :1= syn;
ETB : constaamt CHARACTER := etd;
CAN : constant CHARACTER 1= can;
EM t constaat CHARACTER := em;
SUB : constamt CHARACTER 1= sub;
ESC : constant CHARACTER := escC;
FS : constamt CHARACTER := fs;
GS : constant CHARACTER 1= gs;
RS : constant CHARACTER := rs;
us : constant CHARACTER := us;
DEL : constant CHARACTER := del;

Predefined Language Environment

-- Other characters:

EXCLAM : coanstant
QUOTATION constant
SHARP constant
DOLLAR : comstant
PERCENT ¢ constant
AMPERSAND constant
COLON constant
SEMICOLON : coastant
QUERY : constant
AT_SIGN coastant
L_BRACKET : coastasat
BACK_SLASH : coustant
R_BRACKET : coastant
CIRCUMFLEX : comnstant
UNDERLINE : constasat
“RAVE : constant
L_BRACE : comnstant
BAR : comstant
R_BRACE : constast
TILDE 1 coastaat

-- Lower case letters
LC_A : constaat CHARACTER := 'a’;

e

CHARACTER := ‘!’
CHARACTER := ‘"'
CHARACTER := '#’;
CHARACTER := 'S’;
CHARACTER := '%’;
CHARACTER := '&';
CHARACTER 1= ':°

CHARACTER = ;'

CHARACTER := '@°
CHARACTER := ' (*
CHARACTER := "\’;

H
H
H
CHARACTER := ‘'?';
;
H
;
H

CHARACTER := ']’;
CHARACTER t= '~';
CHARACTER 1= '_';

CHARACTER 1= '’

CHARACTER :=

CHARACTER 1=

{
CHARACTER 1= |*
}
CHARACTER 1= '~

LC_Z : constant CHARACTER := ‘'2’';

end ASCII;

-- Predefined subtypes:

subtype NATURAL is INTEGER range 0 ..
subtype POSITIVE is INTEGER raage 1 ..

-~ Predefined string type:
type STRING is array(POSITIVE range <>} of CHARACTER;
pragaa PACK(STRING):;

-- The predefined operators for

-- functionm
-- functioa
~= function
-~ function
-- function
~~ funection

-- function
-- function
-~ function

-~ function

“== (LEFT,
/=" (LEPFT,
"<" {LEFT,
"<=" (LEFT,
“>* (LEFT,
">=" (LEFT,
~&" (LEFT :
RIGHT :
*&~ (LEFT
RIGHT :
“&* (LEFT :
RIGHT :
*&~ (LEFT :
RIGHT :

RIGHT
RIGHT
RIGHT
RIGHT
RIGHT
RIGHT

STRING:
STRING)
: CHARACTER;
STRING)

this type are as follows:

INTEGER’ LAST;
INTEGER’ LAST;

STRING) retura BOOLEAN;
STRING) returm BOOLEBAN;

STRING) retura BOOLEAN;
STRING) return BOOLRBAN
STRING) retura BOOLEAN
STRING) returan BOOLEAN

return

return

STRING;
CHARACTER) return
CHARACTER;
CHARACTER) return

Predrfined Language Environment

~e we ne =

STRING;
STRING;
STRING;

STRING;

C-5

Fal

type DURATION is delta i:zplementation_defined
range lmplementation_defined;

-- The predefined operators for the type DURATION are the same as for
-- any fixed-point type.

-- The predefined exceptions:

CONSTRAINT_ERROR : exception;

NUMERIC_ERROR : sxception;
PROGRAM_ERROR : exception;
STORAGE_ERROR : exception;
TASKING_ERROR : exception;

end STANDARD;

Certain aspects of the predefined entities cannot be completely de-
scribed in the language itself. For example, although the enumeration

e BOOLEAN can be written showing the two enumeration literals
FALSE and TRUE, the short-circuit control forms cannot be expressed
in the language.

Note:
The language definition predefines the following library units:

- The package CALENDAR (see 9.6)

- The package SYSTEM (see 13.7)

- The package MACHINE_CODE (see 13.8)

- The generic procedure UNCHECKED_ (see 13.10.1)
DEALLOCATION

- The generic function UNCHECKED_CONVERSION (see 13.10.2)

- The generic package SEQUENTIAL_IO (see 14.2.3)

- The generic package DIRECT_IO (see 14.2.5)

- The package TEXT_IO (see 14.3.10)

- The package IO_EXCEPTIONS (see 14.5)

- The package LOW_LEVEL_ IO (see 14.6)

C-6 Pradefined Language Environment

MACRO PARAMETERS

APPENDIX A
MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC. The meaning and
purpose of these parameters are explained in [UG89]. The parameter values are presented in two
tables. The first table lists the valued that are defined in terms of the maximum input-line length,
which is the value for SMAX_IN-LEN--also listed here. These values are expressed here as Ada
string aggregates, where "V™ represents the maximum input-line length.

Macro Parameter Macro Value

$MAX IN_LEN 255

$BIG_ID1 (1.LV-1 => A,V => 1)

$BIG_ID2 (1.V-1 => A,V =>72)

$BIG_ID3 1.VR2 =>"A) &3 & (1.V-1-V2 =>'A")
$BIG_ID4 (1.V2 =>"A") &4 & (1.V-1-V2 => 'A’)
$BIG_INT_LIT (1.V-3 =>0’) & "298"

$BIG_REAL LIT (1. V-5 =>'0’) & "690.0"

$BIG_STRING1 & (1LVR =>AN&™

$BIG_STRING2 & (1LV-1I-VR2 =>" A& &
$BLANKS (1.V20=>"7
SMAX_LEN_INT_BASED_LITERAL "2:" & (1.V-5 =>0") & "11:"

SMAX_LEN_REAL_BASED_LITERAL "16:" & (1.V-7 => '0’) & "F.E""

SMAX STRING_LITERAL & (1.V2=>"AN&™

Validation Summary Report AVF_VSR_90502/73

SD-Scicon UK Limited Appendix A - Page 1 of 4 XD Ada MC6800 Version 1.2

MACRO PARAMETERS

MACRO PARAMETERS

The following table lists all of the other macro parameters and their respective values.

Macro Parameter

$ACC_SIZE
$ALIGNMENT
$COUNT_LAST
$DEFAULT_MEM_SIZE
SDEFAULT_STOR_UNIT
SDEFAULT_SYS_NAME
SDELTA_DOC
SENTRY_ADDRESS
$SENTRY_ADDRESS1
SENTRY_ADDRESS2
SFIELD_LAST
$FILE_TERMINATOR
SFIXED_NAME
$FLOAT_NAME
SFORM_STRING
$FORM_STRING2

SGREATER_THAN_DURATION

Macro Value

32

1

2147483647

16777216

8

MC68000

2#1.#E-31
SYSTEM.TO_ADDRESS (16#68#)
SYSTEM.TO_ADDRESS (16#6C#)
SYSTEM.TO_ADDRESS (16#70#)
255

NO_SUCH_TYPE
LONG_LONG_FLOAT
"CANNOT_RESTRICT_FILE_CAPACITY"

131072.0

$SGREATER_THAN_DURATION_BASE_LAST

1310730

SGREATER_THAN_FLOAT_BASE_LAST 3.40283E+38

Validation Summary Report

SD-Scicon UK Limited

Appendix A - Page 2 of 4

AVF_VSR_9080273

XD Ada MC6800 Version 1.2

MACRO PARAMETERS

$SGREATER_THAN_FLOAT_SAFE_LARGE

4.255354E+37

$SGREATER_THAN_SHORT_FLOAT_SAFE_LARGE

$HIGH_PRIORITY
SILLEGAL_EXTERNAL_FILE_NAMEI
SILLEGAL_EXTERNAL_FILE_NAME2
SINAPPROPRIATE_LINE_LENGTH
SINAPPROPRIATE_PAGE_LENGTH
SINCLUDE_PRAGMAL
SINCLUDE_PRAGMA2
SINTEGER_FIRST

SINTEGER_LAST
SINTEGER_LAST_PLUS_1
SINTERFACE_LANGUAGE
$LESS_THAN_DURATION
SLESS_THAN_DURATION_BASE_FIRST
SLINE_TERMINATOR
SLOW_PRIORITY
SMACHINE_CODE_STATEMENT
SMACHINE_CODE_TYPE
SMANTISSA_DOC

SMAX_DIGITS

SMAX_INT

SMAX_INT_PLUS_1

"NO_SUCH_TYPE"

15
ILLEGAL_EXTERNAL_FILE_NAME _1
ILLEGAL_EXTERNAL_FILE_NAME 2
1

-1

PRAGMA INCLUDE ("A28006D1.TST")
PRAGMA INCLUDE ("B28006D1.TST")
-2147483648

2147483647

2147483648

ASSEMBLER

-131072.0

-131073.0

0

OPERANDLESS_INST' (OPCODE= >NOP);
OPERANDLESS_INST

31

18

2147483647

2147483648

Validation Summary Report

SD-Scicon UK Limited

Appendix A - Page 3 of 4

AVF_VSR_9050273

XD Ads MC6800 Version 1.2

MACRO PARAMETERS

SMIN_INT

$NAME

$NAME_LIST
SNAME_SPECIFICATION1
$NAME_SPECIFICATION2
$NAME_SPECIFICATION3
$NEG_BASED_INT
SNEW_MEM_SIZE
SNEW_STOR_UNIT
SNEW_SYS_NAME
SPAGE_TERMINATOR

SRECORD_DEFINITION

$RECORD_NAME
STASK_SIZE
STASK_STORAGE_SIZE
$TICK
SVARIABLE_ADDRESS
$VARIABLE_ADDRESS]1
SVARIABLE_ADDRESS2

$SYOUR_PRAGMA

-2147483648
SHORT_SHORT_INTEGER
MC68000
NO_SUCH_NAME
NO_SUCH_NAME
NO_SUCH_NAME
16#FFFF_FFFF#

123456

8

MC68000

0

RECORD OPCODE:OPERANDLESS OP; END
RECORD;

OPERANDLESS_INST

32

2048

2#1.0#E-13
SYSTEM.TO_ADDRESS (16#40C#)
SYSTEM.TO_ADDRESS (16#408#)
SYSTEM.TO_ADDRESS (16#404#)
EXPORT_OBJECT
EXPORT_EXCEPTION
EXPORT_FUNCTION
EXPORT_PROCEDURE
IMPORT_OBJECT
IMPORT_EXCEPTION

IMPORT_FUNCTION
IMPORT_PROCEDURE

Validation Sammary Report

SD-Scicon UK Limited

AVF_VSR_9050273

Appendix A - Page 4 of 4 XD Ada MC6800 Version 1.2

COMPILATION SYSTEM OPTIONS

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this Appendix, are provided by the
customer. Unless specifically noted otherwise, references in this appendix are to compiler
documentation and not to this report.

Validation Summary Report AVF_VSR_90502/73

SD-Scicon UK Limited Appendix B - Page 1 of 2 XD Ada MC6800 Version 1.2

COMPILATION SYSTEM OPTIONS

LINKER OPTIONS

The linker options of this Ada implementation, as described in this Appendix, are provided by the
customer. Unless specifically noted otherwise, references in this appendix are to linker
documentation and not to this report.

Validation Summary Report AVF_VSR_9050273

SD-Scicon UK Limited Appendix B - Page 2 of 2 XD Ada MC6800 Version 1.2

Appendix A

XDACS LINK Command Definition

XDACS LINK Command Defimtion A-1

LINK

LINK

Creates an executable image file for the specified units.

Format LINK unit-name [file-spec],...]]
LINK/NOMAIN unit-namel,...] file-spec],...]

Command Qualifiers Defaults

/AFTER = time /IAFTER = TODAY
IBATCH_LOG = tile-spec See text.

/BRIEF See text.
ICOMMAND] = file-spec) See text.
/[NO]DEBUG /NODEBUG
IELABORATION = file-spec See text.

JFULL See text.
[{NOJ]IMAGE(= file-spec] IMAGE
/{[NO]KEEP /IKEEP

/[NOJLOG /NOLOG
/{NO]MAIN IMAIN

/[NOJMAP| = file-spec] INOMAP

INAME = job-name See text.
/[NOINOTIFY INOTIFY
IOUTPUT =file-spec IOUTPUT = SYSSOUTPUT
/[INOJPRINTER| = queue-name} /NOPRINTER
/IQUEVUE = queue-name /QUEUE = SYSSBATCH
/INOJSELECTIVE ISELECTIVE
ISUBMIT WAIT

IWAIT IWAIT
Parameter Qualifiers Defauits
/LIBRARY See text.
IMAPPING See text.
ITARGET See text.

A-2 XDACS LINK Command Definition

LINK

Prompts

_Unit:
_File:

Command Parameters

unit-name
By default (or if you specify the /MAIN qualifier):

* You can specify only one unit, the source code of which must be
written in XD Ada.

¢ The parameter unit-name specifies the XD Ada main program, which
must be a procedure or function with no parameters. If the main
program is a function, it must return a value of a discrete type; the
function value is used as the VMS image exit value.

If you specify the INOMAIN qualifier:

¢ You can specify one or more foreign units that are to be inciluded
in the executable image. The unit names may include percent signs
(%) and asterisks (*) as wildcard characters. (See the VMS DCL
Concepts Manual for detailed information on wildcard characters.)

¢ The image transfer address comes from one of the foreign files
specified.

file-spec

Specifies a list of object files, object libraries, mapping defiuition files,
and target definition files, that are to be used in linking the program.
The default directory is the current default directory. The default file
type is .XOB, unless the /LIBRARY, /MAPPING, or /TARGET qualifier is
used. No wildcard characters are allowed in a file specification.

If the file is an object library, you must use the /LIBRARY qualifier. The
defaulit file type is .XLB.

If the file is a mapping definition file, you must use the /MAPPING
qualifier. The default file type is .MPD.

If the file is a target definition file you must use the ITARGET qualifier.
The default file type is . TGD.

If you specify the INOMAIN qualifier, the image transfer address comes
from one of the files (not units) specified.

XDACS LINK Command Definition A-3

LINK

Description

The LINK command performs the following steps:

1.
5

T4

w

Runs the prebuild phase to generate ar elaboration list.

Checks if a pragma LINK_OPTION is specified for the main pro-
gram, a..d if specified, verifies that the designated link option name
1s available in the current program library. If available, the copied
link option files in the library corresponding to the link option are
used, unless overridden by the /TTARGET or /MAPPING qualifiers.

Note that, unlike the CHECK command, the pragma LINK_
OPTION association for units other than the main program unit
is not checked.

If no target link option is given for the main program unit or the
designated target link option is not found in the library, and the
logical name XDADASTARGET_DEF is not defined, and a /TTARGET
qualifier is not specified on the LINK command line, an error is
issued. If no mapping link option is given for the main program unit
or the designated mapping link option is not found in the library,
and the logical name XDADASMAPPING_DEF is not defined, and a
IMAPPING qualifier is not specified on the XDACS LINK command
line, the default mapping in the target definition file is used.

If LINK/NOMAIN is not specified, checks that only one unit is
specified and that it is an XD Ada main program.

Forms the closure of the main program (LINK/MAIN) or of the
specified units (LINK/NO and verifies that all units in the
closure are present, current and complete. If XDACS detects an
error, the operation is terminated at the end of the prebuild phase.

Creates a DCL command file for the builder. The command file is
deleted after the LINK operation is completed or terminated, unless
LINK/COMMAND is specified. If LINK/COMMAND is specified,
the command file is retained for future use, and the build phase is
not carried out.

Unless the /ICOMMAND qualifier is specified, performs the build
phase as follows:

a. By default (LINK/WAIT), the command file generated in step
5’is executed in a subprocess. You must wait for the build
operation to terminate before issuing another command. Note
that when you specify the IWAIT qualifier (the default), process
logical names are propagated to the subprocess generated to
execute the command file.

A-4 XDACS LINK Command Detinition

LINK

b. If you specify the ISUBMIT qualifier, the builder command file
is subuutted as a batch job.

7. 1t the IDEBUG qualifier is incluced in the command line the debug
symbol table information is placed in the .XXE file.

8. Creates a loadable output file with a default file type of .XXE.

XDACS output originating before the builder is invoked is reported
to your terminal by default, or to a file specified with the /OQUTPUT
qualifier. Diagnostics are reported to your terminal, hy default, or to

a log file if the LINK command is executed in batch mode (XDACS
LINK/SUBMIT).

See Developing XD Ada Programs on VMS Systems for the MC68020 and the
XD Ada Version 1.2 New Features Manual for more information on the XD
Ada target-specific builder commands.

Command Qualifiers

IAFTER =time

Requests that the batch job be held until after a specific time, when
the LINK command is executed in batch mode (LINK/SUBMIT). If the

specified time has already passed, the job is queued for immediate
processing.

You can specify either an absolute time or a combination of absolute
and delta time. See the VMS DCL Concepts Manual (or type HELP

Specify Date-Time at the DCL prompt) for complete information on
specifying time values.

/BATCH_LOG = file-spec

Provides a file specification for the batch log file when the LINK com-
mand is executed in batch mode (LINK/SUBMIT).

If you do not give a directory specification with the file-spec option, the
batch log file is created by default in the current default directory. If
you do not give a file specification, the defauit file name is the job name
specified with the INAME =job-name qualifier. If no job name has been
specified, the program library manager creates a file name comprising
up to the first 39 characters of the first unit name specified. If you
specified LINK/NOMAIN and no job name and there is a wildcard
character in the first unit specified, the program library manager uses
the default file name XDACS_LINK. The default file type is .LOG.

XDACS LINK Command Definiion A-S

LINK

/BRIEF

Directs the builder to produce a brief image map file. The /BRIEF
qualifier is valid only if you also specify the /MAP qualifier with the
LINK command. The /BRIEF qualifier is incompatible with the /FULL
qualifier.

A brief image map file contains only the following sections:

* Object module information
¢ Segment mapping information
e Link run statistics

See also the description of the /FULL qualifier.

/ICOMMANOD(= file-spec]

Controls whether the builder is invoked as a result of the LINK com-
mand, and determines whether the command file generated to invoke
the builder is saved. If you specify the COMMAND qualifier, XDACS
does not invoke the builder, and the generated command file is saved
for you to invoke or submit as a batch job.

The file-spec option allows you to enter a file specification for the gen-
erated command file. The default directory for the command file is the
current default directory. By default, XDACS provides a file name com-
prising up to the first 39 characters of the first unit name specified. If
you specified LINK/NOMAIN and you used a wildcard character in the
first unit name specified, the program library manager uses the default
file name XDACS_LINK. The defauit file type is .COM. No wildcard
characters are allowed in the file specification.

By default, if the /{COMMAND qualifier is not specified, XDACS deietes
the generated command file when the LINK command completes
normally or is terminated.

IDEBUG

/NODEBUG (D)

Controls whether a debugger symbol table is generated in the loadable
image file.

By default, no debugger symbol table is created.

/ELABORATION =file-spec

Provides a file specification for the object file generated by the LINK
command. The file is retained by XDACS only when the /COMMAND
qualifier is used: that is, when the result of th> LINK operation is to

A-8 XDACS LINK Command M~finition

LINK

produce a builder command file for future use, rather than to invoke the
builder immediately.

The generated object file contains the code that directs the elaboration
of library packages in the closure of the units specified. Unless you also
specify the INOMAIN qualifier, the object file also contains the image
transter address.

The default directory for the generated text file is the current default

directory. The default file type is .ELB. No wildcard characters are
allowed in the file specification.

By default, if you do not specify the [ELABORATION qualifier, XDACS
provides a file name comprising up to the first 39 characters of the first
unit name specified.

By default, if you do not specify the /ICOMMAND qualifier, XDACS
deletes the generated object file when the LINK command completes
normally or is terminated.

/FULL
Directs the builder to produce a full image map file, which is the most
compiete ima%e map. The /FULL qualifier is valid only if you also

specify the / qualifier with the LINK command. Also, the /FULL
qualifier is incompatible with the /BRIEF qualifier.

A full image map file contains the following sections:

* Object module information

e Segment mapping information

* Symbol address information

¢ Exception numbers

¢ Link run statistics

/IMAGE[= file-spec] (D)

INOIMAGE

Controls whether the LINK command creates a loadable image file and

optionally provides a file specification for the file. The default file type
is .XXE. No wildcard characters are allowed in the file specification.

By default, an executable image file is created with a file name compris-
ing up to the first 39 characters of the first unit name specitied.

XDACS LINK Command Definition A-7

LINK

/KEEP (D)
/NOKEEP
Controls whether the batch log file generated is deleted after it

is printed when the LINK command is executed in batch mode
(LINK/SUBMIT).

By defauit, the log file is not deleted.

ILOG
INOLOG (D)
Controls whether a list of all the units included in the executable image

is displayed. The display shows the units according to the order of
elaboration for the program.

By default, a list of all the units included in the executable image is not
displayed.

/MAIN (D)
INOMAIN
Controls where the image transfer address is to be found.

The /MAIN qualifier indicates that the XD Ada unit specified deter-
mines the image transfer address, and hence is to be a main program.

The INOMAIN qualifier indicates that the image transfer address comes
from one of the files specified, and not from one of the XD Ada units
specified.

By default ({MAIN), only one XD Ada unit can be specified, and that
unit must be an XD Ada main program.

IMAP[= file-spec]

INOMAP (D)

Controls whether the builder creates an image map file and optionally
provides a file specification for the file. The default directory for

the image map file is the current directory. The default file name
comprises up to the first 39 characters of the first unit name specified.
The default file type is .MAP. No wildcard characters are allowed in the
file specification.

If neither the /BRIEF nor the /[FULL qualifier is specified with the /MAP
qualifier, /BRIEF is assumed.

By default, no image map file is created.

A-8 XDACS LINK Command Definition

LINK

INAME = job-name
Specifies a string to be used as the job name and as the file name for

the batch log file when the LINK command is executed in batch mode
(LINK/SUBMIT). The job name can have from 1 to 39 characters.

By default, if you do not specify the INAME qualifier, XDACS creates
a job name comprising up to the first 39 characters of the first unit
name specified. If you specify LINK/NOMAIN but do not specify the
INAME qualifier, and you use a wildcard character in the first unit
name specified, the program library manager uses the default file name
XDACS_LINK. In these cases, the job name is also the file name of the
batch log file.

INOTIFY (D)
INONOTIFY
Controls whether a message is broadcast when the LINK command is
executed in batch mode (LINK/SUBMIT). The message is broadcast to

any terminal at which you are logged in, notifying you that your job has
been completed or terminated.

By default, a message is broadcast.

IOUTPUT =flig-spéc

Requests that any output generated before the builder is invoked be
written to the file specified rather than to SYSSOUTPUT. Any diagnostic
messages are written to both SYSSOUTPUT and the file.

The default directory is the current default directory. If you specify a
file type but omit the file name, the default file name is XDACS. The
default file type is .LIS. No wildcard characters are allowed in the file
specification.

By default, the LINK command output is written to SYSSOUTPUT.
IPRINTER[= queue-name]

/NOPRINTER (D)

Controls whether the log file is queued for printing when the LINK
command is executed in batch mode (LINK/SUBMIT) and the batch job
is completed.

The /PRINTER qualifier allows you to specify a particular print queue.
The default print queue for the log file is SYSSPRINT.

By default, the log file is not queued for printing. If you specify
/NOPRINTER, /KEEP is assumed.

XDACS LINK Command Definition A-9

LINK

IQUEUE = queue-name

Specifies the batch job queue in which the job is entered when the
LINK command is executed in batch mode (LINK/SUBMIT).

By default, if the /QUEUE qualifier is not specified, the job is placed in
the default system batch job queue, SYSSBATCH.

ISELECTIVE (D)
INOSELECTIVE
Specifies whether selective linking is performed.

Performing selective linking ensures that only subprograms that are
called will be linked into the program image. Subprograms within the
closure of the main program that are not actually called will be omitted
from the image file. Selective linking produces a program image that
has been optimized according to size.

Non-selective linking ensures that all defined subprograms are linked
into the image.

By default, selective linking is performed.

ISUBMIT

Directs XDACS to submit the command file generated for the builder
to a batch queue. You can continue to issue commands in your current
process without waiting for the batch job to complete. The buiider
output is written to a batch log file.

By default, the generated command file is executed in a subprocess

(LINK/WAIT).

IWAIT

Directs XDACS to execute the command file generated for the builder
in a subprocess. Execution of your current process is suspended until
the subprocess completes. The builder output is written directly to
your terminal. Note that process logical names are propagated to the
subprocess generated to execute the command file.

By default, XDACS executes the command file generated for the builder
in a subprocess: you must wait for the subprocess to terminate before
you can issue another command.

A-10 XDACS LINK Command Definition

LINK

Parameter Qualifiers

/LIBRARY

Indicates that the associated input file is an object module library to be
searched for modules to resolve any undefined symbols in the input
files. The default file type is .XLB.

By defaulit, if you do not specify the /LIBRARY qualifier, the file is
assumed to be an object file with a default file type of .XOB.

IMAPPING

Indicates that the associated input file is a mapping definition file.
Mapping definition files control the location of the program on the
target system. The default file type is .MPD.

By default, if you do not specify the /MAPPING qualifier, the file is
assumed to be an object file with a default file type of .XOB.

ITARGET

Indicates that the associated input file is a target definition file. Target
definition files describe the target system’s memory. The default file
type is .TGD.

By default, if you do not specify the /TARGET qualifier, the file is
assumed to be an object file with a default file type of .XOB.

Examples

1. XDACS> LINK CONTROL_LOOP

MACS-I-CL_LINKING, lnvoking the XD Ada Builder

The LINK command forms the closure of the unit CONTROL_
LOOP, which is an XD Ada main program, creates a builder com-
mand file and package elaboration file, then invokes the command
file in a spawned subprocess.

2. XDACS> LINK/SUBMIT CONTROL_LOOP LOOP_FUNCTIONS/LIBRARY

AACS-1-CL_SUBMITTED, Job CONTROL_LOOP (queue ALL_BATCH, entry 134)
started on FAST_BATCH

The LINK command instructs the builder to link the closure of the
XD Ada main program CONTROL_LOOP against the library LOOP_
FUNCTIONS.XLB. The /SUBMIT qualifier causes XDACS to submit
the builder command file as a batch job.

XDACS LINK Command Definiion A-11

LINK

CDACS> LINK/NCMAIN FLUITD_VCLUMEB,CZUNTER MCNITCTR.XI3
SACS-I-CL_LINKING, [rnvoking =he XD Ada Bui.der

The LINK command builds the XD Ada units FLUID_VOLUME
and COUNTER with the foreign object file MONITOR.XOB. The
INOMAIN qualifier tells the builder that the image transfer address
is in the foreign file.

A-12 XDACS LINK Command Defimtion

Appendix B

XDADA Command Definition

XDADA Commangd Detinition B-1

XDADA

XDADA

Invokes the XD Ada compiler to compile one or more source files.

Format

XDADA file-specf,...]

Command Qualifiers
/LIBRARY = directory-spec

Positional Qualifiers
/[NOJANALYSIS_DATA(= file-spec]
/INOJCHECK
/[INOJCOPY_SOURCE
/[INOJDEBUG(= (option,...D]
/[NOJDIAGNOSTICS] = file-spec]
/[NOJERROR_LIMIT[= n]
/[NOJLIST[= file-spec]
/[NOJLOAD(= option]
/INOJMACHINE_CODE]| = option]
/[INOINOTE_SOURCE
/[NOJOPTIMIZE| = option]
/INOJPREDEFINED_UNIT
/{INOISHOWI = option]
/[NO]SYNTAX_ONLY
I{NO]WARNINGS = (option(,...D]

Defauits
/LIBRARY = XDADASLIB

Defauits
/INOANALYSIS_DATA
See text.
ICOPY_SOURCE
/{DEBUG =ALL
INODIAGNOSTICS
/ERROR_LIMIT =30
INOLIST

/ILOAD = REPLACE
INOMACHINE_CODE
INOTE_SOURCE

See text.
/NOPREDEFINED_UNIT
ISHOW = PORTABILITY
INOSYNTAX_ONLY
See text.

Prompt

_File:

Command Parameters

file-spec

Specifies one or more XD Ada source files to be compiled. If you do
not specify a file type, the compiler uses the default file type of .ADA.
No wildcard characters are allowed in the file specifications.

B-2 XDADA Command Definition

XDADA

If you specify several source files as arguments to the XDADA com-
mand, you must separate adjacent file specificatons with a comma (,).
If you specify more than one input file, you must separate adjacent file
specifications with a comma (,). You cannot use a plus sign (+) to
separate file specifications.

Description

The XDADA command is one of four commands used to compile com-

pilation units. The other three are the XDACS COMPILE, RECOMPILE
and LOAD commands.

The XDADA command can be used at any time to compile one or
more source files (ADA). Source files are compiled in the order they
appear on the command line. If a source file contains more than one
compilation unit, they are compiled in the order they appear in the
source file.

The XDADA command compiles units in the context of the current
program library. Whenever a compilation unit is compiled without

error, the current program library is updated with the object module
and other products of the compilation.

Command Qualifiers

ILIBRARY = directory-spec

Specifies the program library that is to be the current program library
for the duration of the compilation. The directory specified must be an

already existing XD Ada program library. No wildcard characters are
allowed in the directory specification.

By default, the current program library is the program library last
specified in an XDACS SET LIBRARY command. The logical name

XDADASLIB is assigned to the program horary specified in an XDCAS
SET LIBRARY command.

Positional Qualifiers

IANALYSIS_DATA([= file-spec]
INOANALYSIS_DATA (D)

Controls whether a data analysis file containing source code cross-
reference and static analysis information is created. The data analysis

XDADA Command Definition B-3

XDADA

file is supported only for use with DIGITAL layered products, such as
the VAX Source Code Analyzer.

One data analysis file is created for each source file compiled. The
default directory for data analysis files is the current default directory.
The default file name is the name of the source file being compiled.
The default file type 1s . ANA. No wildcard characters are allowed in the

file specification.
By default, no data analysis file is created.

/ICHECK
INOCHECK

Controls whether all run-time checks are suppressed. The INOCHECK

qualifier is equivalent to having all possible SUPPRESS pragmas in the
source code.

Explicit use of the /{CHECK qualifier overrides any occurrences of the

pragmas SUPPRESS and SUPPRESS_ALL in the sowrce code, without
the need to edit the source code.

By default, run-time checks are suppressed only in cases where a
pragma SUPPRESS or SUPPRESS_ALL appears in the source.

See the Reference Manual for the Ada Programming Language fot more
information on the pragmas SUPPRESS and SUPPRESS_ALL.

/COPY_SOURCE (D)
/NOCOPY_SOURCE
Controls whether a copied source file (.ADC) is created in the current

sg)éram library when a compilation unit is compiled without error. The
OMPILE command (and thus the COMP command) requires
that a copied source file exist in the current program library for any unit
that is to be recompiied.

By default, a copied source file is created in the current program library
when a unit is compiled without error.

/{DEBUG([= (option|,...])] (D)
/INODEBUG
Controls which compiler debugging options are provided. You can

debug XD Ada programs with the XD Ada Debugger. You can request
the following options:

B8-4 XDADA Command Definiion

XDADA

ALL Provides both SYMBOLS and TRACEBACK.

NONE Provides neither SYMBOLS nor TRACEBACK.

INOJSYMBOLS Controls whether debugger symbol records are in-
cluded in the object file.

[NOJTRACEBACK Controls whether traceback information (a subset of
the debugger symbol information) is inciuded in the
object file.

By default, both debugger symbol records and traceback information are
included in the object file (DEBUG = ALL, or equivalently: /DEBUG).

/DIAGNOSTICS[= file-spec)
INODIAGNOSTICS (D)

Controls whether a diagnostics file containing compiler messages and
diagnostic information is created. The diagnostics file is supported only

for use with DIGITAL layered products, such as the VAX Language-
Sensitive Editor.

One diagnostics file is created for each source file compiled. The
default directory for diagnostics files is the current defauit directory.
The defauit file name is the name of the source file being compiled.
The default file type is .DIA. No wildcard characters are allowed in the
file specification.

By default, no diagnostics file is created.

/ERROR_LIMIT[= n]
INOERROR_LIMIT
Controls whether execution of the XDADA command for a given

compilation unit is terminated upon the occurrence of the nth E-level
error within that unit.

Error counts are not accumulated across a sequence of compilation
units. If the /ERROR_LIMIT =n option is specified, each compilation
unit may have up to n-1 errors without terminating the compilation.
When the error limit is reached within a compilation unit, compilation of
that unit is terminated, but compilation of subsequent units continues.

The /ERROR_LIMIT = 0 option is equivalent to ERROR_LIMIT=1.

By default, execution of the XDADA command is terminated for a given
compilation unit upon the occurrence of the 30th E-level error iwithin
that unit (equivalent to /ERROR_LIMIT = 30).

XDADA Command Defimtion B-$§

XDADA

ILIST[=file-spec]

/NOLIST (D)

Controls whether a listing file is created. One listitg fi's i, created
for each source file compiled. The default dir=~*orv ic. iisting files is
the current default directory. The default file name is the name of the

source file being compiled. The defaul file type is .LIS. No wildcara
characters are allowed in the file specification.

By default, the XDADA command does not cr=z.¢ a listing file.

/LOAD[= option] (D)

/INOLOAD

Controls whether the current program library is updated with the
successfully processed units contained in the specified source files.
Depending on other qualifiers specified (or not specified) with the
XDADA command, processing can involve full compilation, syntax
checking only, and so on. The /INOLOAD qualifier causes the units
in the specified source files to be processed, but prevents the current
program library from being updated.

You can specify the following ortion:

(NOJREPLACE Controis whether a unit added to the current
program librarv replaces an existing unit with the
same name. If vou specify the NOREPLACE option,
the unit is added to the current program library only
if no existing unit has the same name, except if the
new unit is the corresponding body of an existing
specification or vice versa.

By default, the current program library is updated with the success-
fully processed units, and a unit added to the current program library
replaces an existing unit with the same name.

IMACHINE_CODE[= option}

INOMACHINE_CODE (D)

Controls whether generated machine code (approximating assembly
language notation) is included in the listing file.

You can specify one of the following options:

B-8 XDADA Command Defimition

XDADA

SYMBOLIC:NONE Provides machine code listing with no annotation.

SYMBOLIC:NORMAL Provides machine code in the listing file: where
possible, instructions are annotated with simple Ada
names.

SYMBOUC:MAXIMAL Provides machine code in the lListing file; where

possible, instructions are annotated with Ada names,
in expanded form if necessary.

The IMACHINE_CODE qualifier without options is equivalent to
MACHINE_CODE=SYMBOLIC:.NORMAL.

INOTE_SOURCE (D)
INONOTE_SOURCE

Controls whether the file specification of the source file is noted in the
program library when a unit is compiled without error. The COMPILE
command uses this information to locate revised source files.

By default, the file specification of the source file is noted in the pro-
gram library when a unit is compiled without error.

JOPTIMIZE[= (option(, . . .])
INOOPTIMIZE

Controls the level of optimization that is applied in producing the
compiled code. You can specify one of the following primary options:

TIME Provides full optimization with time as the primary
optimization criterion. Overrides any occurrences of
the pragma OPTIMIZE(SPACE) in the source code.

SPACE Provides full optimization with space as the primary
optimization criterion. Overrides any occurrences of
the pragma OPTIMIZE(TIME) in the source code.

DEVELOPMENT Suggested when active development of a program
is in progress. Provides some optimization, but
development considerations and ease of debugging
take preference over optimization. This option
overrides pragmas that establish a dependence on a
subprogram (the pragma INLINE), and thus reduces
the need for recompilations when such bodies are

modified.

NONE Provides no optimization. Suppresses ext 1 ions in
line of subprograms, including those speafied by the
pragma INLINE.

The INOOPTIMIZE qualifier is equivalent to /OPTIMIZE = NONE.

XDADA Command Defimition B-7

XDADA

By default, the XDADA command applies full optimization with time
as the primary optimization criterion (like /OPTIMIZE = TIME, but
observing uses of the pragma OPTIMIZE).

The /OPTIMIZE qualifier also has a set of secondary options that you
can use separately or together with the primary options to override the
default behavior for inline expansion and code motion.

The INLINE secondary option can have the following values:

INLINE:NONE

INLINE:NORMAL

Disables subprogram expansion in line. This option
overrides any occurrences of the pragma INLINE

in the source code, without having to edit the
source file. It also disables implidt expansion in
line of subprograms. (Implicit expansion in line means
that the compiler assumes a pragma INUNE for
certain subprograms as an optimization.) A call to a
subprogram in another unit is not expanded in line,
regardless of the /QPTIMIZE options in effect when
that unit was compiled.

Provides normal subprogram expansion in line.
Subprograms to which an explicit pragma INLINE
applies are expanded in line under certain condi-
tions. In addition, some subprograms are implicitly
expanded in line. The compiler assumes a pragma
INLINE for calls to some small local subprograms
(subprograms that are deciared in the same unit as
the unit in which the call occurs).

INLINE:SUBPROGRAMS Provides maximal subprogram expansion in line. In

B-8 XDADA Command Definition

addition to the normal subprogram expansion in
line that occurs when INLINE:NORMAL is specified,
this option results in implicit expansion in line of
some small subprograms declared in other units.
The compiler assumes a pragma INLINE for any
subprogram if it improves execution speed and
reduces code size. This option may establish a
dependence on the body of another unit, as would be
the case if a pragma INLINE were specified explicitly
in the source code.

INUNE:MAXIMAL

INLINE:GENERICS

XDADA

Provides maxamal subprogram expansion in line.

Maximal subprogram expansion in line occurs as for
INLINE:SUBPROGRAMS.

Provides normal subprogram inline expansion and
maximal generic inline expansion. With this option,
subprogram inline expansion occurs in the same
manner as for INLINE:NORMAL. The compiler
assumes a pragma INLINE_GENERIC for every
instantiation in the unit being compiled unless

a generic body is not available. This option may
establish a dependence on the body of another unit,
as would be the case if a pragma INLINE_CENERIC
were specified explicitly in the source code.

The MOTION secondary option can have the following values:

MOTION:NONE
MOTION:LOOPS

MOTION:MAXIMAL

Disables code motion optimizations.

Permits code motion optimization of loops. Where
the compiler detects that a loop body contains
invariant processing, it may generate code in which
this processing is performed before entry to the loop
instead of within the loop.

Permits all code motion optimizations. In addition
to the optimization of loops that occurs when
MOTION:LOOPS is spedified. this option permits
analogous optimization of it and case statements:
where the compiler detects that the branches of an if
or case statement contain common processing, it may
generate code in which this processing is performed
before evaluation of the corresponding condition or
case expression instead of within the branches.

By default, the /OPTIMIZE qualifier primary options have the following
secondary-option values:

IQPTIMIZE = TIME
IOPTIMIZE = SPACE

= (INLINE:NORMAL,MOTION:LOOPS)
= (INLINE:NORMAL,MOTION:MAXIMAL)

/OPTIMIZE = DEVELOPMENT =(INLINE:NONE.MOTION:NONE)

IOPTIMIZE =NONE

/PREDEFINED_UNIT

= (INLINE:NONE,MOTION:NONE)

/{NOPREDEFINED_UNIT (D)

Controls the compilation of package SRUN_TIME_SYSTEM, pack-
age STASKING_SYSTEM, and package MACHINE_CODE. You must
specify this qualifier in order to be able to compile these packages.

XDADA Command Definition B-9

XDADA

The qualifier is not required for the compilation of any other source

files. See the XD Ada MC68020 Run-Time Reference Manual for more
information.

By default, /PREDEFINED_UNIT is omitted.

ISHOW[= option] (D)
INGSHOW

Controls the listing file options included when a listing file is provided.
You can specify one of the following options:

ALL Provides all listing file options.

[NO]JPORTABILITY Controis whether a program portability summary
is induded in the listing file. By default, the
XDADA command provides a portability sum-
mary (/SHOW=PORTABILITY). See Appendi: E
for details of what can be included in a porta-
bility summary. See Chapter 5 of Version 2.0 of
Developing Ada Programs on VMS Systems for more
information on program portability.

NONE Provides none of the listing file options (same as
INOSHOW).

By default, the XDADA command provides a portability summary
(/SHOW = PORTABILITY).

ISYNTAX_ONLY

INOSYNTAX_ONLY (D)

Controls whether the source file is to be checked only for correct syntax.
If you specify the SSYNTAX_ONLY qualiifier, other compiler checks are

not performed (for example, semantic analysis, type checking, and so
on).

By default, the compiler performs all checks.

IWARNINGS[=(message-option{,...]}]

INOWARNINGS

Controls which categories of informational (I-level) and warning (W-
level) messages are displayed and where those messages are displayed.
You can specify any combination of the following message options:

WARNINGS: (destination,...})
NOWARNINGS

WEAK_WARNINGS: (destination{....])

B8-10 XDADA Command Definition

XDADA

NOWEAK_WARNINGS

SUPPLEMENTAL: (destination|,...])

NOSUPPLEMENTAL

COMPILATION_NOTES: (destination|,...])
NOCOMPILATION_NOTES

STATUS: (destinationy,..

NOSTATUS

8)

The possible values of destination are ALL, NONE, or any combination
of TERMINAL (terminal device), LISTING (listing file}, DIAGNOSTICS
(diagnostics file). The message categories are summarized as follows:

WARNINGS

WEAK_WARNINGS

SUPPLEMENTAL

COMPILATION_NOTES

STATUS

The defauits are as follows.

W-level: Indicates a definite problem in a legal
prograra, for example, an unknown pragma.

I-level: Indicates a potential probiem in

a legal program; for example, a possible
CONSTRAINT _ERROR at run time. These

are the only kind of l-level messages that are
counted in the summary statistics at the end of
a compilation.

I-level: Additional information associated with
preceding E-level or W-levei diagnostics.

I-level: Information about how the compiler
translated a program. such as record layout,
parameter-passing mechanisms, or decisions
made for the pragmas INUNE, INTERFACE, or
the import-subprogram pragmas.

I-level: End of compilation statistics and other
messay. 5.

/WARIIINGS=(WARN:ALL, WEAK:ALL, SUPP:ALL,COMP:iCNE, STAT:LIST)

Note that abbreviations are valid.

If you specify only some of the message categories with the
IWARNINGS qualifier, the default values for other categories are used.

XDADA Command Definition B-11

XDADA

Examples

1. S XDADA MODEL_INTERFACE_,MODEL_INTERFACE,CONTROL_LCICP

The XDADA command compiles the compilation units con-
tained in the three files MODEL_INTERFACE_.ADA, MODEL_
INTERFACE.ADA, and CONTROL_LOQP.ADA, in the order given.

2. S XDADA/LIST/SHOWeALL SCREEN_IO_,SCREEN_IO

The XDADA command compiles the compilation units contained
in the two files SCREEN_IO_.ADA and SCREEN_IO.ADA, in the
order given. The /LIST qualifier creates the listing files SCREEN _
IO_.LIS and SCREEN_IO.LIS in the current default directory. The
{SHOW = ALL qualifier causes all listing file options to be provided
in the listing files.

B-12 XDADA Command Detinition

APPENDIX F OF THE Ada STANDARD

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-dependent pragmas,
to certain machine-dependent conventions as mentioned in Chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The implementation-dependent characteristics
of this Ada implementation, as described in this Appendix, are provided by the customer. Unless
specifically noted otherwise, references in this Appendix are to compiler documentation and not to

this report. Implementation-specific portions of the package STANDARD, which are not a part of
Appendix F, are:

package STANDARD is

type INTEGER is range -2147483648 .. 2147483647,

type SHORT_INTEGER is range -32768 .. 32767;

type SHORT_SHORT_INTEGER is range -128 .. 127;

type FLOAT is digits 6 range -(2**128 - 2**104) .. 2**128 - 2**104;

type LONG_FLOAT is digits 15 range -(2**1024 - 2**971) .. 2**1024 - 2**971;

type LONG_LONG_FLOAT is digits 18 range -(2**16384 - 2°*16320) .. 2°*16384 -
2**16320;

type DURATION is delta 1.0E-4 range -131072.0000 .. 131071.9999;

end STANDARD;

Validation Summary Report AVF_VSR_%0502/73

SD-Scicon UK Limited Appendix C - Page 1 XD Ada MC6800 Version 1.2

Appendix F

Implementation-Dependent
Characteristics

F.3 Specification of Package System

The package SYSTEM for the MC68000 configuration differs from that
of the standard MC68020 as follows:

F.3.1 Package SYSTEM for the MC68000 Target

For MC68000, ihe system description has been redefined as follows:

type NAME is (MCK8000);

STSTEM_NAME : constant MNAME := MCKR000;
STORAGE_UNIT : coastamt := 2;

MEMORY _SIZE : comstant := 2°°*23;

TICK : constaat := 2#1.08E-13;

type ADDRESS_INT is range O .. MEMORY_SIZE-1;

for ADDRESS_INT'SIZE use 22:

Implementation-Dependent Charactenstics F-1

F.6 Interpretation of Expressions Appearing in Address

F-2

Clauses

For MC68020 address clauses on variables, the address expression is
interpreted as a Motorola 32-bit address. For MC68000, it is interpreted
as a Motorola 24-bit address.

In XD Ada for MC68020, values of type SYSTEM.ADDRESS are inter-
preted as integers in the range 0 .. 2*2 _1. For XD Ada MC68000, they
are interpreted as integers in the range 0 .. 22% -1

implementation-Dependent Characteristics

Appendix F

Implementation-Dependent
Characteristics

NOTE

This appendix is not part of the standard definition of the
Ada programming language.

This appendix sumumarizes the following implementation-dependent
characteristics of XD Ada:

Listing the XD Ada pragmas and attributes.
Giving the specification of the package SYSTEM.

Presenting the restrictions on representation clauses and unchecked
type conversions.

Giving the conventions for names denoting implementation-
dependent components in record representation clauses.

Giving the interpretation of expressions in address clauses.

Presenting the implementation-dependent characteristics of the
input-output packages.

Presenting other implementation-dependent characteristics.

References all ap}gly to sections in the XD Ada MC68020 Supplement to

the Ada Language

eference Manual.

imptementation-Dependent Characteristics F-1

F.1 Implementation-Dependent Pragmas

XD Ada provides the following pragmas, which are defined elsewhere
in the text. In addition, XD Ada restricts the predefined language
pragmas INLINE and INTERFACE, provides pragma VOLATILE in
addition to pragma SHARED, and provides pragma SUPPRESS_ALL in
addition to pragma SUPPRESS. See Annex B for a descriptive pragma
summary.

* CALL_SEQUENCE_FUNCTION (see Annex B)

* CALL_SEQUENCE_PROCEDURE (see Annex B)

¢ EXPORT_EXCEPTION (see Section 13.92.3.2)

* EXPORT_FUNCTION (see Section 13.9a.1.2)

* EXPORT_OBJECT (sec Section 13.9a.2.2)

¢ EXPORT_PROCEDURE (see Section 13.9a.1.2)

¢ IMPORT_EXCEPTION (see Section 13.9a.3.1)

¢ IMPORT_FUNCTION (see Section 13.9a.1.1)

* IMPORT_OBJECT (see Section 13.9a.2.1)

* IMPORT_PROCEDURE (see Section 13.9a.1.1)

¢ LEVEL (see Section 13.5.1)

¢ LINK_OPTION (see Annex B)

* SUPPRESS_ALL (see Section 11.7)

¢ TITLE (see Annex B)

* VOLATILE (see Section 9.11)

F.2 Implementation-Dependent Attributes

XD Ada provides the following attributes, which are defined elsewhere
in the text. See Appendix A for a descriptive attribute summary.

* BIT (see Section 13.7.2)
* MACHINE_SIZE (see Section 13.7.2)
* TYPE_CLASS (see Section 13.7a.2)

F-2 Impiementation-Dependent Charactenstics

F.3 Specification of the Package System

The package SYSTEM for the MC68020 is as follows:
package SYSTEM is
type NAME is (MC68020);

SYSTEM_NAME : coastamt NAME := MC68020;
STORAGE_UNIT : comstaat := §;
MBEMORY_SIZE : constamt := 2+*31-1;
MIN_INT : comastant = -(2%"*31);
MAX_INT : comstant := 2**31-1:

MAX _DIGITS : comstaat := 18;
MAX_MANTISSA : comstaat := 3l;
FINE_DELTA : constamt :w 2.0°%(-31);
TICK : constaat := 162.5E-6;

subtype PRIORITY is INTEGER rasge O .. 15;
subtype LEVEL is INTEGER raange O .. 7;
-= Address type

type ADDRESS is private;

ADDRESS_ZERO : comstamt ADDRESS;

type ADDRESS_INT is raage MIN_INT .. MAX_INT;

fusctios TO_ADDRESS (X 1 ADDRESS_INT) return ADDRRSS;
fuaction TO_ADDRESS (X 1 {universal_integer)) returas ADDRESS:
fuactioa TO_ADDRESS_INT (X : ADDRESS) retura ADDRESS_INT;

fumction “+" (LEFT : ADDRESS; RIGHT : ADDRESS_INT) retura ADDRESS;
fumctioa “+" (LEPT : ADDRESS_INT; RIGHT : ADDRESS) returs ADDRESS;
fuactioa °“-" (LEFT : ADDRESS; RIGHT : ADDRESS) return ADDRESS INT;
fuaction "-" (LBFT : ADDRESS; RIGHT : ADDRESS_INT) retura ADDR!SS?

-- fusetioa "=* (LEBPFT, RIGHT
-- fumotiom “/=" (LEFT, RIGHT
fumction "< {LBPFT, RIGHT
functioa "<+ (LEFT, RIGHT
fumetioa “>" (LEFT, RIGHT
funection “>=" (LEPFT, RIGHT

1 ADDRESS) returs BOOLEAN;
t ADDRESS) returm BOOLEAN;
t ADDRESS) retura BOOLEAN;
1 ADDRESS) retszra BOOLRAN;
t ADDRESS) retura BOOLERAN;
:+ ADDRESS) retura BOOLEAN;
-- Note that because ADDRESS is s private type

-- the functions "=" and "/=" are already available

.- Generic functions used to access memory

geasric
type TARGET is private;
functioa FETCH_FROM_ADDRESS (A : ADDRESS) returs TARGET;

geaerie
type TARGET is private;
precedure ASSIGN_TO_ADDRESS (A ! ADORESS; T : TARGET);

implementation-Dependent Characteristics F-3

F-4

type IYPE_CLASS is (TYPE_CLASS_ENUMERATION,
TYPE_CLASS_INTEGER,
TYPE_CLASS_FIXED_POINT,
TYPE_CLASS_FLOATING_POINT,
TYPB_CLASS_ARRAY,
TYPE_CLASS_RECORD,
TYPE_CLASS_ACCESS,
TYPE_CLASS_TASK,
TYPB_CLASS_ADDRESS) ;

XD Ada hardware-oriented types and functions

type
pragsa
sabtype
subtype
sabtype
subtype
type UNS
for UNS
fuaction
fuaction
fuaction
fusctioa

function
function

BIT_ARRAY is arrey (INTEGER raange <>) of BOOLEAN;

PACK(BIT_ARRAY);

BIT_ARRAY_8 is BIT_ARRAY (0 .. 7);
BIT_ARRAY_16 is BIT_ARRAY (0 .. 15);
BIT_ARRAY_32 is BIT_ARRAY (0 .. 31);
BIT_ARRAY_64 is BIT_ARRAY (0 .. 63);
IGNED_BYTE is range 0 .. 255;
IGNED_BYTE'SIZE use 8;

"not* (LEFT
“and® (LEFT, RIGHT :
"or* (LERFT, RIGHT 3
xor (LBPFT, RIGHT

TO_UNSIGNED_BYTE (X

+ UNSIGNED_BYTE) return UNSIGNED_BYTE;

UNSIGNED_BYTE) retura UNSIGNED_BYTE;
UNSIGNED_BYTE) retura UNSIGNED_BYTE;
UNSIGNED_BYTE) retura UNSIGNED_BYTE;

1 BIT_ARRAY_8) retura UNSIGNED_BYTE;
TO_BIT_ARRAY_8 (X : UNSIGNED_BYTE) returm BIT_ARRAY_8;

type UNSIGNED_BYTE_ARRAY is array (INTEGER rasge <>) of UNSIGNED_BYTE;

type UNS
for UNS

fuaction
fumction
fuaction
function

fuaction
fuaction

IGNED_WORD is range 0 .. 65535;
IGNED_WORD’SIZE use 16;
“not" (LEFT

'
"and*® (LEPFT, RIGHT
"or® (LEFT, RIGHT 1
*xor” (LEFT, RIGHT :
TO_UNSIGNED_WORD (X
TO_BIT_ARRAY_16 (%

UNSIGNED_WORD) returs UNSIGNED_WORD;
UNSIGNED_WORD) returs UNSIGNED_WORD;
UNSIGNED_WORD) returs UNSIGNED_WORD;
UNSIGNED_WORD) returs UNSIGNED_WORD;

t BIT_ARRAY_16})
: UNSIGNED_WORD)

retuxrn UNSIGNED_WORD;
returs BIT_ARRAY_16;

type UNSIGNED_WORD_ARRAY is arrasy (INTEGER range <>) of UNSIGNED_WORD;

type UNSIGNED_LONGWORD is ramge MIN_INT .. MAX_I

for UNSIGNED_LONGWORD'SIZE use 32:

fumctioa
fumction
fusctions
fuactioa

fuactioa
fupction

*not” (LEFT 1
“and” (LEFT, RIGHT :
"or" (LEFT, RIGHT :
"xor* (LEFT, RIGHT :

TO_UNSIGNED_LONGWORD
TO_BIT_ARRAY_32

UNSIGNED_LONGWCRD)
UNSIGNED_LONGWORD)
UNSIGNED_LONGWORD)
UNSIGNED_LONGWORD)

(X : BIT_ARRAY_32)

NT;

retura UNSIGNED_LONGWORD:
return UNSIGNED_LONGWORD:
retura UNSIGNED_LONGWORD;
return UNSIGNED_LONGWORD:

retura UNSIGNED_LONGWORD;

(X : UNSIGNED_WCRD) retura BIT_ARRAY_32:

type UNSIGNED_LONGWORD_ARRAY is array (INTEGER ramge <>) of UNSIGNED_LONGWORD;

Implemaentation-Dependent Characteristics

-- Conventional names for statlic subDtypes of type UNSIGNED_LCNGWORD

subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
sabtype
subtype
subtype
subtype
subtype
sebtype
subtype
subtype
subtype
subtype
subtype
subtype
sebtype

private
-=- Not
ead SYSTEM;

UNSIGNED_1 is UNSIGNED_LONGWORD range O .. 2*¢ 1-;
UNSIGNED_2 is UNSIGNED_LONGWORD range C .. 2+* -1:
UNSIGNED_3 4is UNSIGNED_LONGWORD raage O .. 2+ 3.1;
UNSIGNED_4 {8 UNSIGNED_LONGWORD range O .. 2% 4-1;
UNSIGNED_S 4is UNSIGNED_LONGWORD range O .. Z°** S-i;
UNSIGNED_6 is UNSIGNED_LONGWORD range O .. 2+* 6-1;
UNSIGNED_7 is UNSIGNED_LONGWORD reage O .. 2*+* 7-1;
UNSIGNED_8 is UNSIGNED_LCNGWORD range O .. 2** 8-1;
UNSIGNED_9 4is UNSIGNED_LONGWORD ramge O .. 2** 9-1;
UNSIGNED_10 is UNSIGNED_LONGWORD raage O .. 2**10-1;
UNSIGNED_1! is UNSIGNED_LONGWORD reage O .. 2**l1-1;
UNSIGNED_12 is UNSIGNED_LONGWORD raage 0 .. 2**12-1;
UNSIGNED 13 is UNSIGNED_LONGWORD reage O .. 2**13-1;
UNSIGNED_i4 is UNSIGNED_LONGWORD ramge O .. 2**14-1;
"JNSIGNED_15 is UNSIGNED_LONGWORD ramge O .. 2+*1S5-1;
UNSIGNBD_16 is UNSIGNED_LONGWORD ramge O .. 2°*16-1;
UNSIGNED_l7 is UNSIGNED_LONGWORD ramge O .. 2**17-1;
UNSIGNED_18 is UNSIGNED_LONGWORD ramge O .. 2**18-1;
UNSIGNED_19 is UNSIGNBD_LONGWORD ramge O .. 2**19-1;
UNSIGNED_2Q0 is UNSIGNED_LONGWORD ramge O .. 2°¢20-1;
UNSIGNED_21 {s UNSIGNED_LONGWORD ramge 0 .. 2**21-i;
UNSIGNED_22 is UNSIGNED_LONGWORD ramge O .. 2+*22-1;
UNSIGNED_23 is UNSIGNED_LONGWORD ramge O .. 2**23-1;
UNSIGNED_24 is UNSIGNED_LONGWORD raage 0O .. 2%*24-1;
UNSIGNED_25 is UNSIGNED_LONGWORD ramnge O .. 2**25-1;
UNSIGNEBD_26 is UNSIGNED_LONGWORD ramge O .. 2**26-1;
UNSIGNED_27 is UNSIGNED_LONGWORD ramge 0 .. 2°*27-1;
UNSIGNED_28 is UNSIGNED_LONGWORD ramge O .. 2**28-1;
UNSIGNED_29 is UNSIGNBD_LONGWORD ramge O .. 2°**29-1;
UNSIGNED_30 is UNSIGNED_LONGWORD ramge O .. 2°*30-1;
UNSIGNED_31 is UNSIGNED_LONGWORD raage O .. 2+*31-1;

shown

F.4 Restrictions on Representation Clauses

The representation clauses allowed in XD Ada are length, enumeration,
record representation, and address clauses.

In XD Ada, a representation clause for a generic formal type or a type
that depends on a generic formal type is not ailowed. In addition, a
representation clause for a composite type that has a component or
subcomponent of a generic formal type or a type derived from a generic
formai type is not allowed.

Impiementation-Dependent Charactenstics F-5

Restrictions on length clauses are specified in Section 13.2; restrictions
on enumeration representation clauses are specified in Section 13.3; and

restrictions on record representation clauses are specified in Section
13.4.

F.5 Conventions for Implementation-Generated Names

Denoting Implementation-Dependent Components in
Record Representation Clauses

XD Ada does not allocate implementation-dependent components in
records.

F.6 Interpretation of Expressions Appearing in Address
Clauses

Expressions appearing in address clauses must be of the type ADDRESS
defined in package SYSTEM (see Section 13.7a.1 and Section F.3).

XD Ada allows address clauses for variables (see Section 13.5). For
address clauses on variables, the address expression is interpreted as a
Motorola full 32-bit address.

XD Ada supports address clauses on task entries to allow interrupts to
cause a reschedule directly. For address clauses on task entries, the
address expression is interpreted as a Motorola exception vector offset.

In XD Ada for MC68020, values of type SYSTEM.ADDRESS are inter-

preted as integers in the range 0 .. 232 _1. As SYSTEM.ADDRESS is
a private type, the only operations allowed on objects of this type are
those given in package SYSTEM.

F.7 Restrictions on Unchecked Type Conversions

XD Ada supports the generic function UNCHECKED_CONVERSION
with the restrictions given in Section 10.3.2.

F-68 Implemantation-Dependent Characteristics

F.8 Implementation-Dependent Characteristics of
Input-Output Packages

The packages SEQUENTIAL_IO and DIRECT_IO are implemented as
null packages that conform to the specification given in the Reference
Manual for the Ada Programming Language. The packages raise the ex-
ceptions specified in Chapter 14 of the Reference Manual for the Ada
Programming Language. The three possible exceptions that are raived by
these packages are given here, in the order in which they are raised.

Exception When Raised

STATUS_ERROR Raised by an attempt to operate upon or close a file
that is not open (no files can be opened).

NAME_ERROR Raised if a file name is given with a call of CREATE
or OPEN.

USE_ERROR Raised if exception STATUS_ERROR is not raised.

MODE_ERROR cannot be raised since no file can be opened (therefore
it cannot have a current mode).

The predefined package LOW_LEVEL_IO is not provided.

F.8.1 The Package TEXT_IO

The package TEXT_IO conforms to the srﬂeciﬂcation given in the
Reference Manual for the Ada Programming Language. String input-
output is implemented as defined. File input-output is supported to
STANDARD_INPUT and STANDARD_OUTPUT only. The possible
exceptions that are raised by package TEXT_IO are as follows:

implementation-Dependent Charactensucs F-7

Exception

When Raised

STATUS_ERROR

NAME_ERROR

MODE_ERROR

END_ERROR

USE_ERROR

Raised by an attempt to operate upon or close a file
that is not open (no files can be opened).

Raised if a file name is given with a call of CREATE
or OPEN.

Raised by an attempt to read from, or test for
the end of, STANDARD _OUTPUT, or to write to
STANDARD_INPUT.

Raised by an attempt to read past the end of
STANDARD_INPUT.

Raised when an unsupported operation is attempted,
that would otherwise be legal.

The type COUNT is defined as follows:

type COUNT is range O ..

INTEGER' LAST;

The subtype FIELD is defined as follows:

type FIELD is INTEGER ramge 0 .. 132;

F.8.2 The Package |IO_EXCEPTIONS

The specification of the package IO_EXCEI' ONS is the same as that
given in the Reference Manual for the Ada Programming Language.

F.9 Other implementation Characteristics

Implementation characteristics associated with the definition of a main
program, various numeric ranges, and implementation limits are sum-
marized in the following sections.

F.9.1 Definition of a Main Program

Any library procedure can be used as a main program provided that it
has no formal parameters.

F-8 Implementation-Dependent Charactaristics

F.9.2 Values of Integer Attributes

The ranges of values for integer types declared in package STANDARD
are as follows:

SHORT_SHORT_INTEGER 2027 (-128 .. 127)
SHORT_INTEGER S28 0285 (-32768 .. 32767)
INTEGER 232 (-2147483648 .. 2147483647)

For the package TEXT_IO, the range of values for types COUNT and
FIELD are as follows:

COUNT 0. 21 (0 .. 2147483647)
FIELD 0..132

F.9.3 Values of Floating-Point Attributes

Floating-point types are described in Section 3.5.7. The representation
attributes of floating-point types are summarized in the following table:

Implementation-Dependent Charactenstics F-9

FLOAT LONG_FLOAT LONG_LONG_FLOAT
DIGITS 6 15 18
SIZE 32 64 96
MANTISSA 21 51 61
EMAX 84 204 244
EPSILON 2-0 2-% 2-%0
SMALL 2-% 2-us 2-us
LARGE 2828 254 21 M e
SAFE_EMAX 125 1021 16382
SAFE_SMALL 2" 2~ 2w
SAFE_LARGE 213 g1 21021 2970 216382 _j1e321
FIRST ~(2'8_2104y _(zlou_zm) _(le_zmzo)
LAST 2123_210t 21026-2971 2!6&4-2!0520
MACHINE_RADIX 2 2 2
MACHINE_MANTISSA 24 53 64
MACHINE_EMAX 128 1024 16384
MACHINE _EMIN -125 -1021 -16382
MACHINE_ROUNDS FALSE FALSE FALSE
MACHINE_OVERFLOWS FALSE FALSE FALSE

F-10 Impiementation-Dependent Charactenstics

F.9.4 Attributes of Type DURATION

The values of the significant attributes of type DURATION are as

follows:

DURATION 'DELTA 1.E-4 (10%
DURATION 'SMALL 2#1.0#E-14 2=
DURATION 'FIRST -131072.0000 (-2
DURATIONLAST 131071.9999 (2"7-'DELTA)

F.9.5 Implementation Limits

Limit Description

255 Maximum identifier length (number of characters)

255 Maximum number of characters in a source line

210 Maximum number of library units and subunits in a compilation
closure'

2" Maximum number of library units and subunits in an execution
closure?

2% 1 Maximum number of enumeration literals in an enumeration
type definition

2' 1 Maximum number of lines in a source file

2 Maximum number of bits in any object

2% Maximum number of exceptions

"The compilation closure of a given unit is the total set of units that the given unit
depends on, directly and indirectly.

IThe execution closure of a given unit is the compilation closure pius all associated
secondary units.

Impiementation-Dependent Charactenstics F-11

Appendix F

Implementation-Dependent
Characteristics

This appendix describes Version 1.2 additions to the range of
implementation-dependent pragmas, and enhancements to the func-

tionality of Package TEXT_IO. It supplements information supplied in
the Version 1.0 version of this appendix.

F.1 Implementation-Dependent Pragmas

XD Ada MC68020 Version 1.2 supglies three new pragmas, DIRECT_
INTERRUPT_ENTRY, IDENT and _SLICE. In the followi

ing full
list of supported pragmas, references refer to sections in the Xg Ada
MC68020 Supplement to the Ada Language Reference Manual, unless updated

by sections supplied in this manual.

s CALL_SEQUENCE_FUNCTION (see Annex B)
s CALL_SEQUENCE_PROCEDURE (see Annex B)
o DIRECT_INTERRUPT_ENTRY (see Section 13.5.1)
e EXPORT_EXCEPTION (see Section 13.9a.3.2)

s EXPORT_FUNCTION (see Section 13.9a.1.2)

s EXPORT_OBJECT (see Section 13.9a.2.2)

e EXPORT_PROCEDURE (see Section 13.9a.1.2)

¢ IDENT (see Annex B)

o IMPORT_EXCEPTION (see Section 13.9a.3.1)

e IMPORT_FUNCTION (see Section 13.9a.1.1)

Implementation-Dependent Characteristics F-1

IMPORT_OBJECT (see Section 13.9a.2.1)
IMPORT_PROCEDURE (see Section 13.9a.1.1)
LEVEL (see Section 13.5.1)

LINK_OPTION (see Annex B)
SUPPRESS_ALL (see Section 11.7)

TITLE (see Annex B)

TIME_SLICE (see Section 9.8a)

VOLATILE (see Section 9.11)

F.8.1 The Package TEXT_IO

F-2

The package TEXT_IO conforms to the specification given in the

Manual for the Ada Programming Language. Package TEXT_IO, as

supplied by XD Ada MC68020 Version 1.2, has changed as follows:

The Run-Time System now supports asynchronous input-output
operations, where a TEXT_IO operation will cause only the task
that performs the operation to be suspended awaiting its com-
pletion, rather than ali the tasks in the pro, . You enable this
facility by compiling the file XDADASTARGET_SOURCE:ASYNC_
TERMINAL_IO.ADA into your program library, as described in
the XD Ada MC68020 Version 1.2 New Features Manual. You dis-
able asynchronous TEXT_IO operations by compiling the file
XDADASTARGET_SOURCE: IERMINAL_IO.ADA into your pro-
gram library.

Support is provided for target input-output to be directed to logical
input and output streams on the host. This facility is available for
both the XDDEBUG and XDRUN commands.

Input and output are buffered. For input, all characters up to an
end of line or end of page are made available to the target

before further characters are read. For output, the buffer is flushed
following an end of line or end of page. See the XD Ada MC68020
Version 1.2 New Features Manual for details of the TEXT_IO data
objects that control this behavior.

Note that if XDADASINPUT and XDADASOUTPUT are defined but
opening the file gives an error, for exampie the file does not exist,
the filename is invalid or no read/write permission is assigned, the
file is treated as empty.

implementation-Dependent Characteristics

types can be packed as components of composite types, as well as
information on how these types are packed.

A record component that begins a variant is always allocated at the next
byte boundary: a variant that begins on other than a byte boundary can
be obtained only with a record representation clause.

XD Ada provides no additional representation pragmas.

The following information supplements paragraph 14:

XD Ada does not allow a representation clause for a type that depends
on a generic formal type. A type depends on a generic formal type

if it has a subcomponent of a generic formal type or a subcomponent
that depends on a generic formal type, or if it is derived from a generic
formal type or a type that depends on a generic formal type.

13.2 Length Clauses

The following information supplements paragraph 6:

In XD Ada, for a discrete type, the given size must not exceed 32
(bits). The given size becomes the default allocation for all objects and
components (in 2rrays and records) of that type. However, sizes of
objects may be increased by the compiler for optimization purposes.

For integer and enumeration types, the given size affects the internal
representation as follows: for integer types, high order bits are sign-
extended; for enumeration types, the high order bits may be either
zero- or sign-extended depending upon the base representation that
is selected. For all other types, the given size must equal the size that
would apply in the absence of a size specification.

The following information supplements paragraph 8:

The specification of a collection size is interpreted as follows. If the
value of the expression is greater than or equal to zero, the specified
size (representing the number of bytes in the collection) is rounded up
to the longword boundary nearest (4 bytes), and is then used as the
initial size of the collection; the collection is not extended should that
initial allocation be exhausted. In the absence of a T'STORAGE_SIZE,
no storage is initially allocated for the collection; storage is allocated

13-2 Length Clauses 132

13-2

There are two ways an interrupt entry can be handled, according to
whether or not the task has a pragma LEVEL. The XD Ada MC68020
Run-Time Reference Manual gives examples of interrupt handlers.

Tasks with interrupt entries but no pragma LEVEL run at interrupt level
0 only while accepting an interrupt in a rendezvous. Other interrupts of
the same level or lower levels are inhibited while in the handler. It is,
however, possible to lose interrupts with this method.

Tasks with interrupt entries and a pragma LEVEL always run at interrupt
level, whether inside or outside a rendezvous. This enables the user to
avoid losing interrupts.

An interrupt entry to a task with the pragma LEVEL behaves like an
ordinary entry call. An interrupt entry to a task with no pragma LEVEL
behaves like a conditional entry call. If there is an accept statement
waiting for the interrupt, the body of the accept statement is executed
immediately. When the body is complete, the task is inserted in the
ready queue and the interrupt completed by a return-from-interrupt
instruction. The accept statement can call subprograms and make entry
calls, but must not suspend the task before the interrupt is dismissed,
otherwise the program repeatedly services the interrupt unsuccessfully.

Wﬁﬁnﬁ interrupt handlers in XD Ada requires detailed knowledge of
the or of the target computer’s interrupt system. It is not possible
simply to place a use clause on an entry to achieve the desired effect.

Normal Ada interrupt entries cause a tasking reschedule each time an
interrupt occurs. This inevitably incurs a performance overhead, and
may mean that interrupts are not serviced quickly enough. In order to
avoid this problem, XD Ada supplies pragma DIRECT_ UPT_
ENTRY, ch causes the interrupt entry to be connected directly to
the required interrupt vector. This run-time efficiency greatly improves
response times. The form of this pragma is as follows:

pregma DIRECT_INTERRUPT_ENTRY(interrupt_entry);

Pragma DIRECT_INTERRUPT_ENTRY may be used where the pro-
gram adheres to one of two supported code models. In fact, most
applications will naturally adhere to one or other of the models, so the
practical restrictions from this requirement are minimal. The use of
pragma DIRECT_INTERRUPT_ENTRY must meet certain semantic con-
ditions. These, along with the checks carried out by the compiler and
run-time system, are described in full in the XD Ada MC68020 Run-Time
Reference Manual part of this manual.

interrupts 13.5.1

Chapter 13

Representation Clauses and
Implementation-Dependent
Features

The text in this chapter lists the differences between XD Ada MC68000
and XD Ada MC68020, as described in the XD Ada MC68020 Supplement
to the Ada Language Reference Manual.

13.1 Representation Clauses

The following information replaces the MC68020 supplement to para-
graph 13:

Praéma PACK is implemented in XD Ada. As the behaviour of pragma
PACK is implementation dependent, users are advised to use represen-
tation clauses to ensure a particular representation across targets.

In XD Ada MC68000, all array and record com})onents are aligned
according to their types by default; the effect of pragma PACK on a
record or array is to cause those components which are packable to be
allocated in adjacent bits without regard to byte bondaries. Whether
any particular component is packable depends on the rules for its type;
the XD Adn MC68020 Run-Time Reference Manual gives information on
which types can be packed as components of composite types, as well
as information on how these types are packed.

13.1 Repraesentation Clauses 13-1

Chapter 13

Representation Clauses and
Implementation-Dependent
Features

Supplementary XD Ada information is provided for Sections 13.1, 13.2,
13.3, 13.4, 135, 13.5.1, 13.7, 13.7.1, 13.7.2, 13.7.3, 13.8, 13.9, 13.10.1
and 13.10.2. Two additional sections, Section 13.7a and Section 13.9a,
provide XD Ada information on the package SYSTEM and on the XD
Ada import and export pragmas.

13.1 Representation Clauses

The following information supplements paragraphs 4 and 8:

In XD Ada, an address clause can only apply to a variable or a single
entry; an address clause cannot apply to a constant, subprogram,
package, or task unit. See Section 13.5 for further explanation.

The following information supplements paragraph 13:

Pragma PACK is implemented in XD Ada. As the behavior of pragma
PACK is implementation dependent, users are advised to use represen-
tation clauses to ensure a particular representation across targets.

In XD Ada, all array and record components are aligned on byte
boundaries by default; the effect of ﬁragma PACK on a record or
array is to cause those components that are packable to be allocated in
adjacent bits without regard to byte boundaries. Whether any particular
comﬁ)nem is gackable depends on the rules for its type; the XD

Ada MC68020 Run-Time Reference Manual gives information on which

13.1 Representation Clauses 13-1

from the heap as needed, until all heap memory is exhausted. If the
value is less than zero, the exception CONSTRAINT_ERROR is raised.

The following information supplements paragraph 10:

A task storage specification overrides the default task storage size. The
specification is interpreted as follows. If the value of the expression

is greater than zero, the specified size is rounded up to the nearest
longword boundary (4 bytes), and this determines the number of
storage units (bytes) to be allocated for an activation of the task of the
given type. In the absence of a T'STORAGE_SIZE, a default allocation

is used. If the value is less than zero, the exception CONSTRAINT_
ERROR is raised.

The following information supplements paragraphs 8 and 10:

NOTE

The XD Ada MC68020 Run-Time Reference Manual discusses
task and access type storage and storage allocation in more
detail.

The following information supplements paragraph 12:

In XD Ada, arbitrary values of small are accepted. The default value of
small is the largest power of two that is not greater than the given delta
(see Section 3.5.9).

If small is specified (see Section 3.5.9 (LRM)), the specified value must
not exceed the default. For example:

for MY_FIXED‘SMALL use 0.001;

This example is a legal specification for the declaration of MY_FIXED
because the value specified for small (0.001) is less than the delta (0.1)
and that also satisfies the specified range (0.0..1.0).

13.3 Enumeration Representation Clauses

The following information supplements paragraph 4:

In XD Ada, the only specific restriction on enumeration representation
clauses is that each expression for an integer code must have a value in
the range MIN_INT .. MAX_INT.

13.3 Enumeration Representation Clauses 13-3

13.4 Record Representation Clauses

13-4

The following information supplements paragraph 4:

For statically allocated objects and for objects allocated from a collection
in XD Ada, the simple expression in an alignment clause must be

a power of two. The upper limit is 23!, The alignment then occurs
at a location that is a number of bytes times the value of the simple
expression: a value of 2 causes word alignment, a value of 4 causes
longword alignment, and so on.

Further restrictions apply for objects declared within a subprogram,
where XD Ada restricts the alignment to mod 1. In other words, stack-
allocated objects can only be byte aligned.

Bit-alignable representation clauses are provided for discrete types,
arrays of discrete types, and record types.

See the XD Ada MC68020 Run-Time Reference Manual for information on
how objects are allocated.

The following information supplements paragraph 5:

A component clause specifies the storage place of a component relative
to the start of the record. In XD Ada for MC68020 targets, the size of a
storage unit (SYSTEM.STORAGE_UNIT) is eight bits (one byte). If the
number of bits specified by the range is sufficient for the component
subtype, the requested size and placement of the field is observed (and
overlaps storage boundaries if necessary); otherwise, the specification is
illegal. For a component of a discrete type, the number of bits must not
exceed 32; for a component of any other type, the size must not exceed
the actual size of the component. See the XD Ada MC68020 Run-Time
Reference Manual for information about determining the number of bits
that are sufficient for any given subtype.

Component values in XD Ada are biased when a component clause
requires a very small component storage space; each value stored
is the unsigned quantity formed by subtracting COMPONENT _
SUBTYPEFIRST from the original value. See the XD Ada MC68020
Run-Time Reference Manual for more detailed information.

Component clauses in XD Ada are restricted as follows. Any com-
ponent that is not packable must be allocated on a byte boundary.
Components that are packable can be allocated without restriction. See
the XD Ada MC68020 Run-Time Reference Manual for a definition and
description of packable components.

Record Representation Clauses 13.4

The following information supplements paragraph 6:

Components named in a component clause are allocated first: then,
unnamed components are allocated in the order in which they are
written in the record type declaration. Variants can be overlapped. If
pragma PACK is specified, packed allocation rules (see Section 13.1)
are used; otherwise, unpacked allocation is used.

The following information supplements paragraph 8:

XD Ada generates no implementation-dependent components or
names.

The following information supplements the Notes section:

The example of record representation and address clauses in the
Reference Manual for the Ada Programming Language is not relevant for
XD Ada as it assumes that type ADDRESS is represented in 24 bits,
whereas in XD Ada type ADDRESS is represented in 32 bits. The
following example is appropriate to XD Ada:

Example:
type CONDITION_CODE is (X,N,Z,V,C);

type CONDITION_CODES is array (CONDITION_CODE) of BOOLEAN;
pragma PACK (CONDITION_CODES);

type PROGRAM_3TATUS_WORD is

record
TRACE_ENABLE : INTEGEP range O .. 3;
SUPERVISOR_STATE : BOOLEAN;
INTERRUPT_STATE : BOOLEAN;
INTERRUPT_MASK : INTEGER range 0 .., 7;
cc ¢ CONDITION_CODES;

end record;

for PROGRAM_STATUS_WORD use
record at mod 1;

TRACE_ENABLE at O raage O 1;
SUPERVISOR_STATE at 0 range 2 2;
INTERRUPT_STATE at O range 3 3;
INTERRUPT_MASK at 0 renge 5 7:
cc at 0 range 11 15;

sad record;
for PROGRAM_STATUS_WORD'SIZE use 2 * SYSTEM.STORAGE_UNIT;

Note on the example:

The record represertation clause defines the record layout. The length
clause guarantees that exactly two storage units are used.

Record Representation Clauses 13-5

Chapter 13

Representation Clauses and
Implementation-Dependent
Features

This chapter describes XD Ada MC68020 Version 1.2 interrupt handling.
In particular, it describes the handling of direct interrupt entries, and
use of pragma DIRECT_INTERRUPT_ENTRY.

13.5.1 Interrupts

The following information supplements all of this section:

Unlike VAX Ada, XD Ada supports interrupts. The address in the use
clause is the address of the interrupt. The address is interpreted as an
offset in bytes from the vector base register. For details of MC68020
exception vector assignments, see Table 6-2 of the MC68020 32-Bit
Microprocessor User’s Manual. Note that when assigning vectors, the
offset is a .nultiple of four of the vector number. In this way, vector
number 64 (decimal) would have the hexadecimal offset 100.

In addition to support for normal Ada interrupt entries, XD Ada
rovides the additional pragmas LEVEL and DIRECT_INTERRUPT_

Y. Pragma LEVEL is given for a task type, or single task of anony-
mous type, and gives the level for its inter upts. Pragma DIRECT_
INTERRUPT_ENTRY is used to connect an interrupt entry directly to the
required interrupt vector, and is described below.

13.5.1 Interrupts 13-1

Component Specification Example:
subtype S is INTEGER range 10 .. 13:

type REC is
record
X t+ 5;
Y ¢ S
end record;

for REC use

record
X at O range O .. 3; -- legal because 4 bits
~- are sufficient
Y st O range 4 .. 4; -- illegal because 1 bit is

~- not enough to represent
-~ an integer of subtype S
ead record;

Notes on the example:

The subtype declaration in this example implies an integer with a min-
imum size of four bits. However, the components X and Y of subtype
S are biased and can be stored in only two Lits. The component clause
for X is legal because it requires at least the minimum number of bits
required for the integer subtype; the component clause for Y is illegal
because it does not allow enough bits to represent the integer subtype.

13.5 Address Clauses

13-8

The following information supplements paragraph 7:
Like VAX Ada, XD Ada supports address clauses.

In XD Ada, the simple name must be the name of a variable. XD Ada
does not allow address clauses that name constants; or subprogram,
package, or task units.

An intermediate pointer is created only if the resulting address is not a
compile-time constant.

The placement of an address clause in XD Ada must follow the rules
given in Section 13.1. In other words, the clause and the variable
declaration must both occur immediately within the same declarative
part or package specification, and the declaration must occur before
the clause. The restrictions for forcing occurrences also apply: with
respect to address clauses, any occurrence of the variable name after its
declaration is a forcing occurrence.

Address Clauses 135

Address clauses are not allowed in combination with any of the XD Ada

pragmas for importing or exporting objects. If used in such cases, the
pragma involved is ignored.

The following information supplements the Notes section:

Also, if an address clause is specified for an object of a type that has
been declared with an alignment clause, the alignment required for the
address is checked against the alignment given for the record type. If
the two are incompatible, the exception PROGRAM_ERROR is raised.

The same check applies to a type that contains a component of a type
that has been declared with an alignment clause (the alignment of the
component forces the alignment of the containing type).

13.5.1 Interrupts

The following information supplements all of this section:

Unlike VAX Ada, XD Ada supports interrupts. The address in the use
clause is the address of the interrupt. The address is interpreted as an
offset from the vector base register.

XD Ada provides the additional pragma LEVEL. This pragma is given
for a task type, or single task of anonymous type, and gives the level for
its interrupts.

There are two ways an interrupt entry can be handled, according to
whether or not the task has a pragma LEVEL. The XD Ada MC68020
Run-Time Reference Manual gives examples of interrupt handlers.

Tasks with interrupt entries but no pragma run at interrupt level whilst
accepting an interrupt in a rendezvous. Other interrupts of the same
level or lower levels are inhibited. It is possible to lose interrupts with
this method.

Tasks with interrupt entries and a pragma LEVEL always run at interrupt
level, whether inside or outside a rendezvous. This enables the user to
avoid losing interrupts.

An interrupt entry to a task with the pragma behaves like an ordinary
entry call. An interrupt entry to a task with no pragma behaves like a
conditional entry call. If there is an accept statement waiting for the
interrupt, the body of the accept statement is executed immediately.
When the body is complete, the task is inserted in the ready queue
and the interrupt completed by a return-from-interrupt instruction. The

13.5.1 Interrupts 13-7

A record component that begins a variant is always allocated on the next
byte, word or long-word according to its type: a variant that begins on
other than its default can be obtained only with a record representation
clause.

XD Ada provides no additional representation pragmas.

13.7 The Package System

The following information replaces the MC68020 supplement to para-

graph 5:
In XD Ada MC68000, the enumeration literal for SYSTEM_NAME is
MC68000.
The following information replaces the MC68020 supplement to para-
graph 9:

4 In XD Ada MC68000, the number given for MEMORY_SIZE must be

2++24. Like VAX Ada, XD Ada MC68000 does not provide support for
checking or ensuring that the given size is not exceeded.

13.7a XD Ada Additions to the Package SYSTEM

13.7a.1 Properties of the Type ADDRESS

In XD Ada MC68000, ADDRESS is a private type redefined as follows:

type ADDRESS_INT is range O .. MEMORY_SIZE - 1;
for ADDRESS_INT'SIZE use 32;

13.7.1 System-Dependent Named Numbers

In XD Ada MC68000, the value for the system-dependent named
number, TICK, is redefined as follows:

Attribute MC68000
TICK 1.0x2°"

13-2 System-Dependent Named Numbers 13.7.1

accept statement can make excursions into other routines, and can even
make entry calls, but must not suspend the task before the interrupt

is dismissed, otherwise the program repeatedly services the interrupt
unsuccessfully.

Writing interrupt handlers in XD Ada requires detailed knowledge of
the behavior of the target computer’s interrupt system. It is not possible
simply to place a use clause on an entry to achieve the desired effect.

13.7 The Package System

The following information supplements paragraph 1:

XD Ada additions to the package SYSTEM are described in Section
13.7a.

The following information supplements paragraph 5:

In XD Ada, the enumeration literal for SYSTEM_NAME is MC68020.

The following information supplements paragraph 7:
In XD Ada, the value given for STORAGE_UNIT must be 8 (bits).

The following information supplements paragraph 9:

In XD Ada, the number given for MEMORY_SIZE must be 2++31-1.
Like VAX Ada, XD Ada does not provide support for checking or
ensuring that the given size is not exceeded.

The following information supplements paragraph 11:

As with VAX Ada, XD Ada imposes no further limitations on these
pragmas. To reduce the amount of recompilation required, XD Ada
identifies those units that have a real dependence on the values affected
by these pragmas; only such units must be recompiled. In particular,
predefined XD Ada packages do not depend on the values affected by
these pragmas, and none require recompilation if these pragmas are
used.

13.7a XD Ada Additions to the Package SYSTEM

In addition to the language-required declarations in package SYSTEM,
XD Ada declares the operations, constants, types, and subtypes de-
scribed in the following sections.

13-8 XD Ada Additions tc the Package SYSTEM 13.7a

13.7a.1

Properties o! the Type ADDRESS

Properties of the Type ADDRESS

In XD Ada, ADDRESS is a private type for which the following opera-
tions are declared:

Address type

type ADDRESS is private;

ADDRESS_ZERO : comstant ADDRESS;

type ADDRESS_INT is ramge MIN_INT

.. MAX_INT;

funeties TO_ADDRESS (X t ADDRESS_INT)

functios TO_ADDRESS (X : {(universal_integer})
fusctios TO_ADDRESS_INT (X 1 ADDRESS)

fumetios "+ (LEPT : ADDRESS; RIGHT : ADDRESS_INT)
fumction "+° (LEFT : ADDRESS_INT; RIGHT : ADDRESS)
fusctios "-" (LEFT : ADDRESS; RIGHT : ADDRESS)
functiom "-" (LEFT : ADDRESS; RIGHT : ADDRESS_INT)
fusetios “=" (LEFT, RIGHT : ADDRESS) returm BOOLEAN;
funetios “/=" (LEFT, RIGHT : ADDRESS) returas BOOLEAN;
fumctions “"<° (LEFT, RIGHT : ADDRESS) returm BOOLEAN:
fusetios "<=" (LBFT, RIGHT : ADDRESS) returm BOOLEAN;
fusctios °>° (LEPT, RIGHT : ADDRESS) returm BOOLEAN;
fusctios °“>=" (LEFT, RIGHT : ADDRESS) return BOOLEAN;

Note that because ADDRESS is

a private type

the functions "= and “/=" are already available

Generic functions used to access memory

generic

type TARGET is private;

fusotiom FETCH_FROM_ADDRESS

geseriec

type TARGET {s private;

procedure ASSIGN_TO_ADDRESS

(A 1 ADDRESS;

(A 1 ADDRESS) returm TARGET:

T 1 TARGET):;

return
retura
returs

retura
retura
returs
return

ADDRESS;
ADDRESS;
ADDRESS5_INT;

ADDRESS;
ADDRESS ;
ADDRESS_INT;
ADDRESS

The addition, subtraction, and relational functions provide arithmetic
and comparative operations for addresses. The generic subprograms
FETCH_FROM_ADDRESS and ASSIGN_TO_ADDRESS provide op-
erations for reading from or writing to a given address interpreted as

having any desired

value corresponds to the first (machine) address.

13.7a.1

type. ADDRESS_ZERO is a deferred constant whose

13-9

In an instantiation of FETCH_FROM_ADDRESS or ASSIGN_TO_
ADDRESS, the actual subtype corresponding to the formal type T
must not be an unconstrained array type or an unconstrained type with
discriminants. If the actual subtype is a type with discriminants, the
value fetched by a call of a function resulting from an instantiation of
FETCH_FROM_ADDRESS is checked to ensure that the discriminants
satisfy the constraints of the actual subtype. In any other case, no check
is made.

Example:

X : INTEGER;
A 1 SYSTEM.ADDRESS := X'ADDRESS; -~ legal

functioa FETCH 4is new FETCH_FROM_ADDRESS(INTEGER):
procedure ASSIGN is new ASSIGN_TO_ADDRESS(INTEGER);

X 1= FETCH(A):; -- like "X 1= A.all;"
ASSIGN(A,X); -~ like "A.all := X;*"

13.7a.2 Type Class Enumeration Type

13-10

XD Ada declares the following enumeration type for identifying the
various Ada type classes:

type TYPE_CLASS is (TYPE_CLASS_ENUMERATION,
TYPE_CLASS_INTEGER,
TYPE_CLASS_FIXED_POINT,
TYPE_CLASS_FLOATING_POINT,
TYPE_CLASS_ARRAY,
TYPE_CLASS_RECORD,
TYPE_CLASS_ACCESS,
TYPE_CLASS_TASK,
TYPE_CLASS_ADDRESS) ;

In addition to the usual operations for discrete types (see Section 3.5.5),
XD Ada provides the attribute TYPE_CLASS.

For every type or subtype T:

T'TYPE_CLASS Yields the value of the type class for the full type of
T. If T is a generic formal type, then the value is that
for the corresponding actual subtype. The value of
this attribute is of the type TYPE_CLASS. :

This attribute is only allowed if its unit names the predefined package
SYSTEM in a with clause.

13.7a.2 Type Class Enumeration Type

Examples:

Given

type MY_INT is range 1..19;
type NEW_INT is new STRING:

package PACK {s

type PRIV is private;

private

type PRIV is new FLOAT;

end PACK;

then

-- MY_INT'TYPE_CLASS equals
-- NEW_INT'TYPE_CLASS equals

-= PRIV’TYPE_CLASS

equals

TYPE_CLASS_INTEGER
TYPE_CLASS_ARRAY

TYPE_CLASS_FLOATING_POINT

13.7a.3 Hardware-Oriented Types and Functions

XD Ada declares the following types, subtypes, and functions for
convenience in working with MC68020 hardware-oriented storage:

XD Ada hardware-oriented types and functions

type BIT_ARRAY is array (INTEGER raage <>) of BOOLEAN:

pragas PACK(BIT_ARRAY);

subtype BIT_ARRAY_8 is BIT_ARRAY (0 .. 7);

subtype BIT_ARRAY_16 is BIT_AR

RAY (0 .. 15);

subtype BIT_ARRAY 32 is BIT_ARRAY (0 .. 31);
sebtype BIT_ARRAY_64 is BIT_ARRAY (0 .. 63);

type UNSIGNED_BYTE is raamge O
fer UNSIGNED_BYTE'SIZE use 9
fumotien “"not” (LBFI 1
fumnction “and” (LEFT, RIGHT :
fuacties "or" (LEFT, RIGHT :
functiea °xor” (LBFT, RIGHT :

fuaction TO_UNSIGNED_BYTE (X :

type UNSIGNED_BYTE_ARRAY is arvey (INTEGER range <>) of UNSIGNED_BYTE;

type UNSIGNED_WORD is raage 0
for UNSIGNED_WORD'SIZE wuse 1}
fumcotioa °“not” (LEFT 1
function “and” (LEFT, RIGHT :
fusetion “or® (LEFT, RIGHT :
funetion “xor” (LEFT, RIGHT :

fuaction TO_UNSIGNED_WORD (X @
fumetion TO_BIT_ARRAY_16 (X

.o 255;
UNSIGNED_BYTE)
UNSIGNED_BYTE)
UNSIGNED_BYTE)
UNSIGNED_BYTE)

Totura
retura
retura
retura

UNSIGNED_BYTE:
UNSIGNED_BYTE;
UNSIGNED_BYTE;
UNSIGNED_BYTE;

BIT_ARRAY_8) returm UNSIGNED_BYTE;
fumction TO_BIT_ARRAY 8 (X : UNSIGNED_BYTE) returm BIT_ARRAY_8;

65535;
6;
UNSIGNED_WORD)
UNSIGNED_WORD)
UNSIGNED_WORD)
UNSIGNED_WORD)

BIT_ARRAY_16)
UNSIGNED_WORD)

Mardware-Oriented Types and Functions 13.7a.3

return
returs
return
retura

retura
return

UNSIGNED_WORD;
UNSIGNED_WORD;
UNSIGNED_WORD:
UNSIGNED_WORD;

UNSIGNED_WORD;
BIT_ARRAY_16;

13-11

type UNSIGNED WORD_ARRAY is array (INTEGER range <>) of

type UNSIGNED_LONGWORD is range MIN_INT

UNSIGNEBD_WORD;

for UNSIGNED_ LONGWORD’SIZE use 32;

function
fuaction
function
function

function
fuactioa

“not” (LBFT
“and" (LEPFT,
"or* (LEFT,
“xor” (LEFT,

TO_UNSIGNED_LONGWORD

TO_BIT_ARRAY_

H UNSIGNBD_LONGWORD) return UNSIGNED_LONGWORD;
RIGHT UNSIGNED_LONGWORD) return UNSIGNED_LONGHORD:
RIGHT : UNSIGNED_LONGWORD) retura UNSIGNED_LONGWORD;
RIGHT : UNSIGNED_LONGWORD) retura

UNSIGNED_LONGWORD;

(X : BIT_ARRAY_32) returm Ui“3IGNED_LONGWORD;

32 (X : UNSIGNED_WORD) retura BIT_ARRAY_32;

type UNSIGNED_LONGWORD_ARRAY is array (INTEGER raage <>) of UNSIGNED_LONGWORD;

13.7a.4 Conventional Names for Unsigned Longwords

13-12

The following XD Ada declarations provide conventional names for
static subtypes of the predefined type UNSIGNED_LONGWORD:

subtype
ssbtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype
subtype

UNSIGNED_1

is

UNSIGNED_LONGWORD remge O .. 2+% 1-1;
UNSIGNED_2 4is UNSIGNED_LONGWORD ramge O .. 24* 2-1;
UNSIGNED_3 is UNSIGNED_LONGWORD ramge O .. 2°* 3-1;
UNSIGNED_4 Ls UNSIGNED_LONGWORD ramge O .. 2°* 4-1;
UNSIGNED_S is UNSIGNED_LONGWORD reage O .. 2¢» S-1;
UNSIGNED_6 is UNSIGNED_LONGWORD ramge O .. 2+* 6-1;
UNSIGNED_?7 is UNSIGNED_LONGWORD ramge O .. 2°+ 7-1;
UNSIGNED_B8 is UNSIGNED_LONGWORD ramge O .. 2°+ 8-1;
UNSIGNED_9 is UNSIGNED_LONGWORD ramge O .. 2¢¢ 9-1;
UNSIGNED_10 is UNSIGNED_LONGWORD ramge O .. 2+*10-1:
UNSIGNED_11 is UNSIGNED_LONGWORD ramge O .. 2°*11-1;
UNSIGNED_12 is UNSIGNED_LONGWORD vamge O .. 2%*12-1;
UNSIGNED_13 is UNSIGNED_LONGWORD ramge O .. 2¢*13-1;
UNSIGNED_14 ie UNSIGNED_LONGWORD vsage O .. 2+*14-1;
UNSIGNED_15 is UNSIGNED_LONGWORD resge O .. 2°*15-1;
UNSIGNED_16 is UNSIGNED_LONGWORD ramge 0 .. 2**16-1;
UNSIGNED_17 is UNSIGNED_LONGWORD ramge O .. 24*17-1;
UNSIGNED_18 is UNSIGNED_LONGWCRD ramge O .. 2°*18-1;
UNSIGNED_19 is UNSIGNED_LONGWORD ramge O .. 2**19-1;
UNSIGNED_20 is UNSIGNED_LONGWORD ramge O .. 2¢%20-1;
UNSIGNED_21 is UNSIGNED_LONGWORD ramge O .. 2¢%21-1;
UNSIGNED_22 i# UNSIGNED_LONGWORD ramge O .. 2¢%22-1;
UNSIGNED_23 is UNSIGNED_LONGWORD ramge O .. 2+%23-1;
UNSIGNED_24 is UNSIGNED_LONGWORD ramge O .. 2¢*24-1;
UNSIGNBD_25 is UNSIGNED_LONGWORD raage O .. 29%25-1;
UNSIGNED_26 is UNSIGNED_LONGWORD ramge O .. 2%*26-1;
UNSIGNED_27 is UNSIGNED_LONGWORD raage O .. 2°*27-1;
UNSIGNED_28 is UNSIGNED_LONGWORD ramge O .. 24%28-1:
UNSIGNED_29 s UNSIGNED_LONGWORD ramge O .. 2°*29-1;
UNSIGNED_30 is UNSIGNED_LONGWORD ramge O .. 24+30-1;
UNSIGNED_31 is UNSIGNED_LONGWORD raage O .. 2°*+31-1;

13.7a.4 Conventional Names for Unsigned LongworGs

13.7.1 System-Dependent Named Numbers

In XD Ada, the values for system-dependent named numbers are as
shown in the following table.

Attribute MC68020
MIN_INT 20
MAXUNT 2
MAX_DIGITS 18
MAX_MANTISSA 31
FINE_DELTA 2.0°%

TICK 162.5 x 10~*

13.7.2 Representation Attributes

The following information supplements all of this section:

For any object, program unit, label, or entry X:

X+ ADDRESS

13.7.2 Representation Attributes

Yields the address of the first of the storage ele-
ments allocated to X. For a subprogram, package,
task unit or label, this value refers to the machine
code associated with the corresponding body or
statement. For an entry for which an address
clause has been given, the value refers to the offset
of the interrupt vector from the vector base register.
The value of this attribute is of the type ADDRESS
defined in the package SYSTEM.

For an object that is a variable, the value is the ac-
tual address of the variable (which may be statically
or dynamically allocated). This attribute forces a
variabie to be allocated in memory rather than in
a register, and causes the variable to be marked as
volatile for the duration of the block statement or
body containing use of the attribute. If the location
of the variable is not byte-aligned, the value is

the address of the lowest byte that contains the
variable. For an object that is a constant, the value
is the address of the constant value in memory;
however, two occurrences of C'ADDRESS, where

13-13

13-14

C denotes a constant, may or may not yield the
same address valuc. r an object that is a named
number, the value is zero (ADDRESS_ZERO).

NOTE

In the context of these representation
attributes, ADDRESS_ZERO means only
that no useful interpretation of a nonzero
value is currently supported. That is, its
use as a result of C’ADDRESS is subject
to change.

For an access object, X.all’ADDRESS is the address
of the designated object; X.all’ADDRESS is subject
to an ACCESS_CHECK for the designated object.
For a record comzonem, X.C’ADDRESS is subject
to a DISCRIMIN CHECK for an object in

a variant part. For an array component or slice,
X(T) ADDRESS or X(I1...12)’ ADDRESS is subject to
an INDEX_CHECK for the denoted component or
slice.

For program units that are task units or package
units, the value is zero (ADDRESS_ZERO). For
program units that are subprograms, the value is
the same as the address that would be exported.
(See Section 13.9a.1.4 (LRM) for information on
pragmas EXPORT_FUNCTION and EXPORT_
PROCEDURE).

For entries, the value is zero (ADDRESS_ZERO).

For labels, the value is the address of the machine
code which follows the label.

For any type or subtype X, or for any object X:

X'SIZE

For a type or a subtype, the value is limited to
values in the range (.. MAX_INT; the exception
NUMERIC_ERROR (see Section 11.1) is raised for
values outside this range. For an object that is a
variable or a constant in XD Ada, the value is its
size in bits. For an object that is a named num-
ber, the value is zero. For a record component,
X.C'SIZE is subject to a DISCRIMINANT_CHECK

Representation Attributes 13.7.2

for an object in a variant part. For an array compo-
nent or slice, X(I)*SIZE or X(I1..12)'SIZE is subject
to an INDEX_CHECK for the denoted component

or slice.

For any type or subtype X:
X'MACHINE_SIZE Yields the number of machine bits to be allocated

For any object X:
X+BIT

13.7.2 Representation Attributes

for variables of the type or subtype. This value
takes into account any padding bits used by XD
Ada when allocating a variable on a byte boundary.
The value of this attribute is of the type universal_
integer.

The value is always a muitiple of 8 (bits). In partic-
ular, for discrete types it is 8, 16, or 32. The value
is limited to the range 0.. MAX_INT; the exception
NUMERIC_ERROR is raised for values outside this
range.

Yields the bit offset within the storage unit (byte)
that contains the first bit of the storage allocated for
the object. The value of this attribute is of the type
universal_integer, and is always in the range 0..7.

For an object that is a variable or a constant al-
located in a register, the value is zero. (The use
of this attribute does not force the allocation of
a variable to memory.) For an object that is a
formal parameter, this attribute applies either
to the matching actual parameter or to a copy
of the matching actual parameter. For an ac-
cess object, the value is zero (in the absence of
CONSTRAINT_ERROR); X.all‘BIT is subject to
an ACCESS_CHECK for the designated object.
For a record component, X.C'BIT is subject to
a DISCRIMINANT_CHECK for a component in
a variant part. For an array component or slice,
X(T)BIT or X(11..12)’BIT is subject to an INDEX_
CHECK for the denoted component or slice.

13-18

The following information supplements the Notes section:

The attribute X' MACHINE_SIZE gives the size that would be used for

a variable of the type or subtype; it does not give the size that may be
used for a component of that type or subtype.

The machine size of a type or subtype can be influenced by representa-
tion clauses, unlike the size of a type or subtype, which is independent
of representation clauses. The machine size of a base type can be less
than, equal to, or greater than the size of that same base type. See the
XD Ada MC68020 Run-Time Reference Manual for examples and additional
discussion.

13.7.3 Representation Attributes of Real Types

The following information supplements paragraphs 3 and 4:
For both fixed- and floating-point types:

T+'MACHINE_ROUNDS In XD Ada this value is FALSE
T*MACHINE_OVERFLOWS In XD Ada this value is FALSE

The XD Ada values of the other representation attributes for floating-

point types are dependent on the floating-point type and are listed in
Appendix F.

13.8 Machine Code Insertions

13-18

The f{ollowing information supplements paragraph 4:
XD Ada provides the package MACHINE_CODE. Machine code inser-
tions can be expanded in line.

This predefined package and not a user-defined package must be
named in a with clause that applies to the compilation unit in which the
code statement occurs.

The following is an example of MACHINE_CODE and the with clause
in use:

Machine Code Insertions 13.8

-~ A machine code procedure to evaluate the sine and cosine of
-~ parameter X, returning the results in parameters Y and 2
-- respectively; the procedure is to be expanded in line, so
-~ it does not require a stack frame of its own:

with MACHINE_CODE;

procedure SINCOS1 (X: im FLOAT;
Y: out FLOAT;
Z: out FLOAT) is
use MACHINE_CODE;
begim FSINCOS_REG_INST’ (

OPCODE => FSINCOS,
SOURCE_REGISTER => FPO,
SIN_REGISTER => FP1,
COS_REGISTER => FP2);

end SINCOS1;

XD Ada provides the pragma CALL_SEQUENCE_PROCEDURE which
specifies parameter-passing mechanisms for machine code procedures.
The pragma is defined in Appendix B. Examples of machine code
insertion are given in Section 6.1 of the XD MC68020 Run-Time
Reference Manual. For the specification of the package MACHINE_
CODE, see Appendix B of the XD Ada MC68020 Run-Time Reference
Manual.

13.9 Interface to Other Languages

13.9

The following information supplements paragraph 4:

As with VAX Ada, use of pragma INTERFACE in XD Ada is interpreted
as being equivalent to supplying the body of the named subprogram or
subprograms. Therefore, the following rules apply:

e If a subpr body is given later for a subprogram named with
pragma ACE, the body is illegal.

e If pragma INTERFACE names a subprogram body, the pragma is
illegal.

e If a duplicate pragma INTERFACE is given, the latter pragma is
illegal.

In XD Ada, pragma INTERFACE applies to a renaming only if the
renaming occurs in the same declarative part or package specification
as the pragma. The renamed subprogram must also occur in that same
declarative part or package specification; renamed subprograms that
occur outsig: the declarative part or package specification are ignored
(without a warning diagnostic).

interface to Other Languages 13-17

13-18

In addition, XD Ada interprets the effect of pragma INTERFACE in such
a way that it accepts and ignores implicit declarations of subprograms
(such as predefined operators, derived subprograms, attribute functions,
and so on).

Dependent upon its use in an XD Ada program, pragma INTERFACE is
interpreted in combination with one of two XD Ada import subprogram
pragmas: IMPORT_FUNCTION or IMPORT_PROCEDURE. These
pragmas are drscribed in Section 13.9a.1.

The language name is ignored, and so may be any identifier that
suggests the language, source, or nature of the imported subprogram.

If pragma INTERFACE is used without one of these import pragm: ., a
default interpretation is used, as follows:

¢ If the subprogram name applies to a single subprogram, then a
default import pragma is assumed as follows:

For a function, the default is as follows:

pragma IMPORT_FUNCTION (function_designator);

For a procedure, the default is as follows:

pregma IMPORT_PROCEDURE (procedure_identifier);

¢ [f the subprogram name applies to two or more subprograms, the
pragma applies to all of them. However, a warning is given if the
appropriate XD Ada import pragmas are not given for all of the
subprograms.

Whether or not pragma INTERFACE is used with an import pragma, the
subprogram name must be an identifier, or a string literal that denotes
an operator symbol. In the following example, pragma INTERFACE
specifies that the indicated routines SQRT and EXP are to be imported
and used as bodies for the XD Ada functions SQRT and EXP in package
FORT_LIB:

package PFORT_LIB is
functioa SQRT(X : FLOAT) returam FLOAT;
fuanction EXP(X : FLOAT) retura FLOAT;
private
pregma INTERFACE(FORTRAN, SQRT);
pragma INTERFACE(FORTRAN, EXP);
end FORT_LIB;

Interface to Other Languages 13.9

13.9

The following information supplements paragraph 5:

In XD Ada, the example package FORT_LIB is interpreted as follows:
ragma INTERFACE specifies that the indicated routines SQRT and
are to be imported and used as bodies for the Ada functions SQRT
and EXP in package FORT_LIB.

package CHOOSE_R is
procedure P(X : INTEGER):
procedure P(X : FLOAT);
private
procedure R(X : FLOAT) renames P:;
pragma INTERFACE(ASSEMBLER, R);
end CHOOSE_R;

In this example, pragma INTERFACE indicates that the body for the
second procedure P is to be imported as routine R.

The following information supplements the Notes section:

The meaning of the subprogram name is determined as for any name
(see Section 8.3 (LRM)), except that the name can denote more than one
subprogram. Thus, in the following declaration the pragma INTERFACE
applies to the first two procedures; it does not apply to the third
because the declaration is not visible at the place of the pragma.

procedure P (B: BOOLRAN);
procedure P (I: INTRGER);
pragas INTERPACE (ASSEMBLEBR, P);
procedure P (F:1 FLOAT);

This same interpretation is made for pragmas used to import and export
subprograms (see Section 13.9a.1).

If pragma INTERFACE and pragma INLINE are used together, the
pragma INLINE is ignored regardless of the order in which the two

pragmas appear.
Refer to Chapter 3 of the XD Ada MC68020 Run-Time Reference Manual
for subprogram calling conventions and run-time organisation, while

Chapter 6 of the same manual describes low-level interfaces and assem-
bly language modules.

Interface to Other Languages 13-19

13.9a XD Ada import and Export Pragmas

XD Ada provides import and export pragmas designed specifi-

cally for constructing programs composed of both Ada and non-

Ada entities. The import pragmas allow an Ada program to refer

to entities written in another language; the export pragmas make

Ada entities available to programs written in other languages.

The names of the pragmas indicate the kind of entity involved:
IMPORT_FUNCTION and EXPORT_FUNCTION apply to nongeneric
functions; IMPORT_PROCEDURE and EXPORT_PROCEDURE apply to
nongeneric procedures; IMPORT_OBJECT and EXPORT_OBJECT apply
to objects; and IMPORT_EXCEPTION and EXPORT_EXCEPTION apply
to exceptions. These gragmas are described in this section, summarized
in Annex B, and listed in Appendix F.

All the XD Ada import and export pragmas have the following form:

pragma import_export_pragma_name
(internal_name [, external_designator]
{. pragma_specific_optionsj);

import_export_pragma_name i:i=
EXPORT_EXCEPTION | EXPORT_FUNCTION

| EXPORT_OBJECT | BXPORT_PROCEDURE
IMPORT EXCEPTION | IMPORT_FUNCTION
IMPORT_OBJECT | IMPORT_PROCEDURE

internal_name 3:1= [INTERNAL =>] simple_name
| (INTERNAL =>] operator_symbol -- Can be used only for
-~ IMPORT_FUNCTION
external_designator :1:= [EXTERNAL =>] external_symbol

external_symbol si1= identifier | string_literal

The internal name can be an Ada simple name, or, if the declared entity
is a function, the internal name can be a string literal that denotes an
ogerator symbol. A subprogram to be imported or exported must be
identified by its internal name and parameter types; and, in the case of
a function, by the result type (see Section 13.9a.1.1).

The external designator determines a symbol that is referenced or
declared in the linker object module. If an identifier is given, the
identifier is used. If a string literal is given, the value of the string is
used. The value of a string literal must be a symbol that is acceptable
to the XD Ada Builder; it need not be valid as an Ada identifier. (For
example, the dollar character ($) can be used.) If no external designator
is given, the internal name is used as the external designator. If the

13-20 XD Ada Import and Export Pragmas 13.9a

external designator (explicit or default) is longer than 12 characters, the
import or export pragma is ignored.

Pragma-specific options are described in the individual pragma sections
that follow.

The XD Ada import and export pragmas are only allowed at the place
of a declarative item, and must apply to an entity declared by an earlier
declarative item of the same declarative part or package specification.
At most one import or export pragma is allowed for any given entity; in
the case of multiple overloaded subprograms, this rule applies to each
subprogram independently.

Additional placement and usage rules apply for particular pragmas as
described in the following sections.

Note:

A:Eument associations for XD Ada import and export pragmas can be
either positional or named. With positional association, the arguments
are interpreted in the order in which they appear in the syntax defini-
tion. The rules for the mixing of positional and named association are
the same as those that apply to subprograms (see Section 6.4 (LRM)).

A pragma for an entity declared in a package specification must not be
given in the package body. (A pragma for an entity given in the visible
part of a package specification can, however, be given in either the
visible or private part of the specification.)

No checking is provided to ensure that exported symbols do not con-
flict with each other or with other global symbols; such checking is
performed by the XD Ada Builder.

13.9a.1 Importing and Exporting Subprograms

XD Ada provides a series of pragmas that make it possible to call
nongeneric subpro;rams in a mixed-language ‘le amming environ-
ment. The IMPORT_FUNCTION and lMP(§R -PROCEDU ragmas
specify that the body of the subprogram associated with an Ada sub-

rogram specification i to be provided from assembly language.

ragma FACE must precede one of these import pragmas (see
Section 13.9). The EXPORT_FUNCTION and EXPORT_PROCEDURE

ragmas allow an Ada procedure or function to be called from assem-
gly language. The pragmas support parameter passing by means of
registers.

Importing and Exporting Subprograms 13.9a.1 13-21

13.9a.1.1 Importing Subprograms

XD Ada provides two pragmas for importing subprograms:
IMPORT_FUNCTION and IMPORT_PROCEDURE. These pragmas
allow the impor: of the kind of subprograms indicated.

The pragmas for importing subprograms have the following form:

pragma IMPORT_FUNCTION | IMPORT_PROCEDURE

([INTERNAL =>) internal_name
{EXTERNAL =>] external_designator }
[PARAMETER_TYPES =>] (parameter_types)]

[RESULT_TYPE =>] type_mark | -=- FUNCTION only
[MECHANISM =>]| mechanism |

[RESULT_MECHANISM =>] mechanism_spec] -- PUNCTION only
[PRRSERVED_REGISTERS =>) (registers) |

b —— -
. a e s s .

)

parameter_types ::=
aull | type_mark (, type_mark}

mechanism t1=

mechanism_spec | (mechanism_spec (, mechanism_spec))
mechanism_spec 1= .

mechanism_name [([REGISTER => | register_name)]
mechanism_name t:=

VALUE |

REFERENCE | BIT_REFERENCE |

DOPE_VECTOR | BIT_DOPE_VECTOR

registers :i=»
sull | register_name (, register_name }

Functions must be identified by their internal names and parameter
and result types. The parameter and result types can be omitted only if
there is exactly one function of that name in the same declarative part or
package specification. Otherwise, both the parameter and result types
must be specified.

Procedures must be identified by their internal names and parameter
types. The parameter types can be omitted only if there is exactly
one procedure of that name in the same declarative part or package
specification. Otherwise, the parameter types must be specified.

The external designator denotes an XD Ada Builder global symbol that
is associated with the external subprogram. If no external designator is
given, the internal name is used as the global symbol.

13-22 importing Subprograms 13.9a.1.1

13.9e.1.1

The parameter types option specifies a series of one or more type
marks (type or subtype names), not parameter names. Each type mark
is positionally associated with a formal parameter in the subprogram’s
declaration. The absence of parameters must be indicated by the
reserved word null.

The resuit type option is used only for functions; it specifies the type or
subtype of the function result.

The mechanism option specifies how the imported subprogram expects
its parameters to be passed (for example, by value, by reference o:

by descriptor). The calling program (namely the XD Ada program)

is responsible for ensuring that parameters are passed in the form
required by the external routine.

Mechanism names are described as follows. Within these definitions,
the term bit string means any one-dimensional array of a discrete type
whose components occupy successive single bits. The term simple
record type means a record type that does not have a variant part and in
which any constraint for each component and subcomponent is static.
A simple record s is a simple record type or a static constrained
subtype of a record type (with discriminants) in which any constraint for
each component and subcomponent of the record type is static.

VALUE Specifies that the immediate value of the actual
parameter is passed. Values of scalars, access
. address types and private types whose
type is either a scalar, an access type or an
address type can be passed by VALUE. If the
value is a private type, the pragma must occur
after the full declaration of the private type. Bit
strings can also be passed by VALUE.

REFERENCE Specifies that the address of the value of the
actual parameter is passed. This mechanism can
be used for parameters of any type.

DOPE_VECTOR Specifies that the address of the DOPE_VECTOR
is passed, a 32-bit pointer to an object, taking
the form described in Section 2.1.4 of the XD
Ada MC68020 Run-Time Reference Manual.

BIT_DOPE_VECTOR Specifies that the address of the BIT_DOPE_
VECTOR is passed, a 32-bit pointer to an object,
taking the form described in Section 2.1.4 of the
XD Ada MC68020 Run-Time Reference Manual.

Importing Subprograms 13-23

If the first form of the mechanism option is given (a single mechanism
name without parentheses), all parameters are passed using that mech-
anism. [f the second form is given (a series of mechanism names in
parentheses and separated by commas), each mechanism name de-
termines how the parameter in the same position in the subprogram
specification will be passed. With the second form, each parameter
name must have an associated mechanism name.

The result mechanism option is used only for functions; it specifies
the parameter-passing mechanism for passing the result type, and
optionally, a specific register used to pass the result.

The preserved registers option gives a list of hardware registers which
are not altered by the procedure or function. If this option is omitted it
implies that no registers are preserved.

In addition to the rules given in Section 13.9a, the rules for importing
subprograms are as follows:

e If an import pragma is given for a subprogram specification, pragma
INTERFACE (see Section 13.9) must also be given for the subpro-
earlier in the same declarative part or package specification.
e use of pragma INTERFACE implies that a corresponding body
is not given.

¢ If a subprogram has been declared as a compilation unit, the
pragma is only allowed after the subprogram declaration and before
any subsequent compilation unit.

¢ These pragmas can be used for subprograms declared with a re-
naming declaration. The internal name must be a simple name, and
the renaming declaration must occur in the same declarative part
or package specification as the pragma. The renamed subprogram
must also occur in that same declarative part or package specifica-
tion. Renamed subprograms that occur outside the declarative part
or package specification are ignored (without a warning diagnostic).

* None of these pragmas can be used for a generic subprogram or
a generic subprogram instantiation. In particular, they cannot be
used for a subprogram that is declared by a generic instantiation of
a predefined subprogram (such as UNCHE D_CONVERSION).

13-24 Importing Subprograms 13.9a.1.1

13.8a.1.1

Examples:

In this example, the pragma INTERFACE identifies SQRT as an external
subprogram; the language name argument ASSEMBLER has no effect.
The pragma IMPORT_FUNCTION uses positional notation to specify
arguments for importing the declared function SQRT. The pragma form
indicates that the internal name is SQRT, and the external designator is
"MTHSSQRT". The parameter is of type FLOAT, and is passed in FP1;
the result is of type FLOAT, and it is returned in FP2.

functios SQRT (X 3 FLOAT) return FLOAT;

pragma INTERFACE (ASSEMBLER, SQRT);

pragaa IMPORT_FUNCTION
(SQRT, "MTHSSQRT", (FLOAT),
FLOAT, (VALUEB(FPl)), VALUB(FP2)
)i

The next example shows an alternative way of importing the declared
function SQRT using named notation. In this case, the parameter is
passed in FP5, and the result is returned in FP4; the registers which are
preserved by the called function are also specified.

fumectiom SQRT (X : LONG_FLOAT) retura LONG_FLOAT;
pregma INTERFACE (ASSEMBLER, SQRT);

progma IMPORT_FUNCTION (INTERNAL => SQRT,
PARAMETER_TYPES => (LONG_FLOAT),
RESULT_TYPE => LONG_FLOAT,
MECHANISM => (VALUE(FPS)),
RESULT_MECHANISM => VALUR(FP4),
TXTERNAL => "MTHSDSQRT",

PRESERVED_REGISTERS =>
(o, b1, D2, D3, D4, D5, D6, D7,
A0, Al, A2, A3, A4, AS,
FPO, FPl1, FP2, FP3, FPS, FP6));

If the previous example is combined with the code in the first example
(that is, with only one occurrence of pragma INTERFACE), the result is
an overloading of SQRT:

importing Subprograms 13-25

functiom SQRT (X : LONG_FLOAT) return LONG_FLOAT;
fumction SQRT (X : FLOAT) returm FLOAT;

pragma INTERFACE (ASSEMBLER, SQRT):;

pragsa IMPORT_FUNCTION (SQRT,

"MTHSSQRT",

(FLOAT),

FLOAT,

(VALUE(FPl)),

VALUER(FP2));

pragma IMPORT_FUNCTION (INTERNAL => SQRT,

PARAMETER_TYPES => (LONG_FLOAT),
RESULT_TYPE => LONG_FLOAT,
MECHANISM => (VALUB(FP5)),
RESULT_MECHANISM => VALUB(FP4),
EXTERNAL => "MTHS$DSQRT",

PRESERVED_REGISTERS =>
(oo, »1i, D2, D3, D4, DS, D6, D7,
AO, Al, A2, A3, A4, AS,
FPO, FP1l, FP2, FP3, FP5, FP6));

The next example shows the use of renaming with an imported pro-
cedure (it is assumed that these declarations occur in a declarative

part or package specification). Note that the renaming causes the im-
ported ASSEMBLER procedure to be used in calls to both procedures
CHANGE and EXCHANGE. Also note that because no external desig-
nator is specified, the builder global symbol associated with the external
subprogram is EXCHANGE, and because no parameter mechanisms
are specified, the compiler’'s defaults will apply in calls to CHANGE or
EXCHANGE.

procedure CHANGE (X,Y : INTEGER);

procedure EXCHANGE (X,Y : INTEGER) reaames CHANGE:

pragma INTERPACE (ASSEMBLER, EXCHANGE):;

pragma IMPORT_PROCEDURE (INTERNAL => EXCHANGE,
PARAMETER_TYPRS => (INTEGER, INTEGER));

13.9a.1.2 Exporting Subprograms

13-26

XD Ada provides two pragmas for exporting subprograms:
EXPORT_FUNCTION and EXPORT_PROCEDURE. Both export prag-
mas establish an external name for a subprogram and make the name
available to the XD Ada Builder as a global symbol, so that the subpro-
gram can be called by an assembly language module.

The EXPORT_FUNCTION and EXPORT_PROCEDURE pragmas allow
the export of the kind of subprograms indicated.

Exporting Subprograms 13.9a.1.2

The pragmas for exporting subprograms have the following form:

pragme EXPORT_FUNCTION | EXPORT_PROCEDURE

([INTERNAL =>| internal_name
[EXTERNAL =>) external_designater)

[l

{, [PARAMETER_TYPES =>] (parameter_types) |

{, [RESULT_TYPE =>] type_mark | -~ FUNCTION only

[+ [MBCHANISM =>] mechanism |

', [RESULT_MECHANISM =~>]) mechanism_spec | -- FUNCTIOM only

parameter_types ::=
aull | type_mark {, type_mark}

mechanism 11=

mechanism_spec | (mechanism_spec {, mechaniem_spec))
mechanism_spec ::=

mechanism_name [([REGISTER => | register_name) |
mechanism_name ::=

VALUE |

REPERENCE | BIT_REFERENCE |

DOPE_VECTOR | BIT_DOPE_VECTOR

registers ::=
aull | register_name {, register_name)

parameter_types i:e
aull | type_mark {, type_mark}

Functions must be identified by their internal names and parameter
and result types. The parameter and result types can be omitted only if
there is exactly one function of that name in the same declarative part or
package specification. Otherwise, both the parameter and result types
must be specified.

Procedures must be identified by their internal names and parameter
types. The parameter types can be omitted only if there is exactly
one procedure of that name in the same declarative part or package
specification. Otherwise, the parameter types must be specitied.

The external designator denotes an XD Ada Builder global symbol
that is associated with the external subprogram. If no external name is
given, the internal name is used as the global symbol.

The parameter types option specifies a series of one or more type
marks (type or subtype names), not parameter names. Each type mark
is positionally associated with a formal parameter in the subprogram'’s
declaration. The absence of parameters must be indicat-d by the
reserved word null.

13.9a.1.2 Exporting Subprograms 13-27

13-28

The result type option is used only for functions; it specifies the type or
subtype of the function result.

The mechanism option specifies how the imported subprogram expects
its parameters to be passed (for example, by value, by reference or

by descriptor). The calling program (namely the XD Ada program)

is responsible for ensuring that parameters are passed in the form
required by the external routine. Mechanism options and possible
values for mechanism names and class names are described in Sectior
13.9a.1.1.

If the first form of the mechanism option is given (a single mechanism
name without parentheses), all parameters are passed using that mech-
anism. If the second form is given (a series of mechanism names in
parentheses and separated by commas), each mechanism name de-
termines how the parameter in the same position in the subprogram
specification will be passed. With the second form, each parameter
name must have an associated mechanism name.

The result mechanism option is used only for functions; it specifies
the parameter-passing mechanism for passing the result type, and
optionally, a specific register used to pass the resuit.

In addition to the rules given in Section 13.9a, the rules for exporting
subprograms are as follows:

¢ An exported subprogram must be a library unit or be declared in
the outermost declarative part of a library package. Thus, pragmas
for exporting subprograms are allowed only in the following cases:

— For a subprogram specification or a subprogram body that is a
library unit

— For a subprogram specification that is declared in the outermost
declarations of a package specification or a package body that is
a library unit

— For a subprogram body that is declared in the outermost decla-
rations of a package body that ic a library unit

Consequently, an export pragma for a subprogram body is allowed
only if either the body does not have a corresponding specification,
or the specification and body occur in the same declarative part.

This set of rules implies that an EXPORT_FUNCTION or
EXPORT_PROCEDURE pragma cannot be given for a generic li-
brary subprogram, nor can one be given for a subprogram declared
in a generic library package. However, either of these pragmas
can be given for a subprogram resulting from the instantiation of

Exporting Subprograms 13.9a.1.2

a generic subprogram, provided that the instantiation otherwise
satisfies this set of rules.

¢ In the case of a subprogram declared as a compilation unit, the

pragma is only allowed after the subprogram declaration and before
any subsequent compilation unit.

* Neither of these pragmas can be used for a subprogram that is
declared with a renaming declaration.

¢ Neither of these pragmas can be used for a subprogram that is
declared by a generic instantiation of a built-in library subprogram
(such as UNCHECKED_CONVERSION).

Examples:

The following example shows an export pragma that causes the Ada
procedure PROC to be exported for use in an assembly language
module. The name PROC is declared as an XD Ada Builder global
sytabol.

procedure PROC (Y : INTEGER);
pragmss BXPORT _PROCERDURE (PRCC);

The next example shows an Ada function being called from an assembly
language module:

fuactioa MULTII"Y (Y : im INTEGER) returm INTEGER is
begia
return Y * 10;
end;
pregma EXPORT_FUNCTION (INTERNAL => MULTIPLY,
PARAMETER_TYPES => (INTEGER},

RESULT_TYPE => INTEGER);
pragma CALL_SEQUENCE_FUNCTION (

UNIT => MULTIPLY,

PARAMETER_TYPES => (INTEGER),

MECHANISM => (VALUR(DO}),

RESULT_MECHANISM => VALUEB(DO));

e e A s e = = -

TITLE "MC68020 Calling Ada"
MODULE *“CALL_ADA"

XDEF CALL_ADA
XREF MULTIPLY

DSEG
A BLKB 4 t An INTEGER
PSEG

13.9a.1.2 Exporting Subprograms 13-28

CALL_ADA

MOVE.L #1,A t A 1= 13

MOVE.L A,DO
JSR MULTIPLY.L

MOVE.L DO,A t A 1= MULTIPLY{ A)
RTS

END

13.9a.2

13-30

importing and Exporting Objects

XD Ada provides two pragmas for importing and exporting objects:
IMPORT_OBJECT and EXPORT_OBJECT. The IMPORT_OBJECT

b

gma references storage declared in an assembly language module.
e EXPORT_OBJECT pragma allows an assembly language module to

refer to the storage allocated for an Ada object.

In addition to the rules given in Section 13.9a, the rules for importing
and exporting objects are as follows:

The object to be imported or exported must be a variable declared
by an object declaration at the outermost level of a library package
specification or body.

The subtype indication of an object to be imported or exported must
denote one of the following:

— A scalar type or subtype.

— An array subtype with static index constraints whose component
size is static.

— A record type or subtype that does not have a variant part and

in which any constraint for each component and subcomponent
is static (a simple record type or subtype).

Import and export pragmas are not allowed for objects declared
with a renaming declaration.

Import and export pragmas for objects are not allowed in a generic
unit.

13.9a.2 Importing and Exporting Objects

Notes:

Objects of private or limited private types cannot be imported or
exported outside the package that declares the (limited) private type.
They can be imported or exported inside the body of the package where
the type is declared (that is, where the full type is known).

The XD Ada pragmas for importing or exporting objects can precede or
follow a pragma VOLATILE for the same objects (see Section 9.11).

Address clauses are not allowed in combination with any of the XD Ada
pragmas for importing or exporting objects. If used in such cases, the
pragma involved is ignored (see Section 13.5).

13.8a.2.1 Importing Objects

The XD Ada IMPORT_OBJECT pragma specifies that the storage allo-
cated for the object (when the assembly language module is compiled)

be made known to the calling Ada program by an extermally-defined XD
Ada Builder global symbol.

Pragma IMPORT_OBJECT has the following form:

pragaa IMPORT_OBJECT
(internal_name [, external_designator])

The internal name is the object identifier. The external designator
denotes an XD Ada Builder global symbol that is associated with the
external object. If no external designator is given, the internal name is
used as the global symbol.

Because it is not created by an Ada elaboration, an imported object
cannot have an initial value. Specifically, this restriction means that the
object to be imported:

¢ Cannot be a constant (have an explicit initial value).

¢ Cannot be an access type (which has a default initial value of null).

e Cannot be a record type that has discriminants (which are always
initialized) or components with default initial expressions.

¢ Cannot be an object of a task type.

13.9a.2.1 Imponing Objects 13-31

Example:

P1D1 INTEGER;
pragma IMPORT_OBJECT (PID, *"PROCESSSID");

In this example, the variable PID refers to the externally-defined symbol
PROCESSSID.

Alternatively, this example can be written in named notation as follows:

PID 1 INTEGER;
pragma IMPORT_OBJECT (INTERNAL => PID,
EXTERNAL => "PROCESSSID");

13.92.2.2 Exporting Objects

The XD Ada pragma EXPORT_OBJECT specifies that the storage al-
located for the object (when the Ada program is compiled) be made
known to assembly language modules by an XD Ada Builder global
symbol.

Pragma EXPORT_OBJECT has the following form:

pragma BXPORT_OBJECT .
{internal_name [, external_designator])

The internal name is the object identifier. The external designator
denotes an XD Ada Builder global symbol that is associated with the
external object. If no external designator is given, the internal name is
used as the global symbol.

Example:

PIDY INTEGER;
pregma BXPORT_OBJRCT (PID, “PROCESSSID®);

Alternatively, this example can be written in named notation:
PID: INTEGER:

pregma EXPORT_OBJECT (INTERNAL => PID,
EXTERNAL => “PROCESSSID");

13-32 Exporting Objects 13.9a.2.2

13.9a.3 Importing and Exporting Exceptions

XD Ada provides the IMPORT_EXCEPTION and EXPORT_EXCEPTION
pragmas for importing and exporting exceptions. The pragma IMPORT_
EXCEPTION allows non-Ada exceptions to be used in Ada programs;
the pragma EXPORT_EXCEPTION allows Ada exceptions to be used by
foreign units.

The rules for importing and exporting exceptions are given in Section
13.9a.

Note:

A pra for an exception that is declared in a package specification is
not allowed in the package body.

13.92.3.1 importing Exceptions

The XD Ada IMPORT_EXCEPTION pragma is provided for compatibil-
ity with VAX Ada. This pragma specifies that the exception associated
with an exception declaration in an Ada program be defined externally
in non-Ada code.

In XD Ada pragma IMPORT_EXCEPTION has the following form:

pragma IMPORT_EXCEPTION
(internal_name {, external_designator]
[+ [FORM =>] ADA]);

The internal name must be an Ada identifier that denotes a declared
exception. The external designator denotes an XD Ada Builder global
symbol to be used to refer to the exception. If no external name is
given, the internal name is used as the global symbol.

For compatibility with VAX Ada, the form option indicates that an Ada
exception is being imported. If omitted, this defaults to ADA.

The external designator refers to an address that identifies the excep-
tion.

The VAX Ada version of this pragma supports an alternative form
(VMS), and a code option in addition to the XD Ada arguments. If
either of these unsupported arguments is specified, the compiler ignores
the pragma and issues a warning message.

Importing Exceptions 13.9a.3.1 13-33

13.90.3.2 Exporting Exceptions

The XD Ada EXPORT_EXCEPTION pragma allows Ada exceptions to
be visible outside the XD Ada program, so that they can be raised and
handled by programs written in XD Ada MC68020 assembly language.
This pragma establishes an external name for an Ada exception an
makes the name available to the XD Ada Builder as a global symbol.
Refer to the XD Ada MC68020 Run-Time Reference Manual for further
information on exporting exceptions.

Pragma EXPORT_EXCEPTION has the following form:
preages EXPORT_EXCEPTION

(internal_name (, external_designator}
{» [FORM =>] ADA |);

The internal name must be an Ada identifier that denotes a declared
exception. The external designator denotes an XD Ada Builder global
symbol to be used to refer to the exception.

The form option specifies that an Ada exception is being exported.

UNDERFLOW : exception
pragasa EXPORT_EXCEPTION (UNDERFLOW, MTH_UNDERFPLOW, ADA);

In this example, an Ada exception is exported as a global symbol.

13-34 13.9a.3.2 Exporting Exceptions

13.10 Unchecked Programming

13.10.1

Unchecked Storage Deallocation

The following information supplements the Notes section:

Because UNCHECKED_DEALLOCATION is a predefined generic pro-
cedure, XD Ada does not allow the use of the IMPORT_PROCEDURE
pragma to substitute an alternative procedure body.

13.10.2 Unchecked Type Conversions

The following information supplements paragraph 2:

XD Ada supports the generic function UNCHECKED_CONVERSION
with the following restrictions on the class of types involved:

¢ The actual subtype corresponding to the formal type TARGET must
not be an unconstrained array type.

* The actual subtype corresponding to the formal type TARGET must
not be an unconstrained type with discriminants.

Further, when the target type is a type with discriminants, the value
resulting from a call of the conversion function resulting from an instan-
tiation of UNCHECKED_CONVERSION is checked to ensure that the
discriminants satisfy the constraints of the actual subtype.

The effect with XD Ada is as if the source value is copied one byte

in ascending order of address, into the destination, also in ascending
order of address. If the destination has fewer bytes than the source
value, the high order bytes of the source value are ignored (truncated).
If the source value has fewer bytes than the destination, the high order
bytes of the destination are set to zero.

13.10.2 Unchecked Type Conversions 13-35

